
Environment International 176 (2023) 107970

Available online 16 May 2023
0160-4120/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Full length article 

A spatial indicator of environmental and climatic vulnerability in Rome 

Chiara Badaloni a,*, Manuela De Sario a, Nicola Caranci c, Francesca de’ Donato a, 
Andrea Bolignano d, Marina Davoli a, Letizia Leccese a, Paola Michelozzi a, Michela Leone b 

a Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy 
b ASL Frosinone, Frosinone, Italy 
c Regional Health and Social Care Agency, Emilia-Romagna Region, Bologna, Italy 
d Lazio Environmental Protection Agency, Rome, Italy   

A R T I C L E  I N F O   

Handling Editor: Xavier Querol  

Keywords: 
Environmental vulnerability 
Climatic vulnerability 
Social vulnerability 
Geographically Weighted Principal Component 
Analysis 
Composite indicator 
Risk stratification 

A B S T R A C T   

Background: Urban areas are disproportionately affected by multiple pressures from overbuilding, traffic, air 
pollution, and heat waves that often interact and are interconnected in producing health effects. A new synthetic 
tool to summarize environmental and climatic vulnerability has been introduced for the city of Rome, Italy, to 
provide the basis for environmental and health policies. 
Methods: From a literature overview and based on the availability of data, several macro-dimensions were 
identified on 1,461 grid cells with a width of 1 km2 in Rome: land use, roads and traffic-related exposure, green 
space data, soil sealing, air pollution (PM2.5, PM10, NO2, C6H6, SO2), urban heat island intensity. The 
Geographically Weighted Principal Component Analysis (GWPCA) method was performed to produce a com-
posite spatial indicator to describe and interpret each spatial feature by integrating all environmental di-
mensions. The method of natural breaks was used to define the risk classes. A bivariate map of environmental 
and social vulnerability was described. 
Results: The first three components explained most of the variation in the data structure with an average of 78.2% 
of the total percentage of variance (PTV) explained by the GWPCA, with air pollution and soil sealing contrib-
uting most in the first component; green space in the second component; road and traffic density and SO2 in the 
third component. 56% of the population lives in areas with high or very high levels of environmental and cli-
matic vulnerability, showing a periphery-centre trend, inverse to the deprivation index. 
Conclusions: A new environmental and climatic vulnerability indicator for the city of Rome was able to identify 
the areas and population at risk in the city, and can be integrated with other vulnerability dimensions, such as 
social deprivation, providing the basis for risk stratification of the population and for the design of policies to 
address environmental, climatic and social injustice.   

1. Introduction 

The world population is growing rapidly, especially in developing 
countries, but also in industrialised countries, and the greatest burden 
will be in urban areas, with 2.8 billion more people by 2050 (United 
Nations, 2022a). This ongoing growth threatens the health of urban 
dwellers, especially the most vulnerable, due to multiple stressors such 
as air pollution, urban solid waste, extreme weather events, and inad-
equate public spaces and services, with actions to reduce such exposures 
still too slow and further delayed by the COVID-19 crisis, such that the 
United Nations Sustainable Development Goal of making cities and 

urban settlements more inclusive, safe, sustainable and resilient will be 
hard to achieve by the ever-closer 2030 (United Nations, 2022b). Cross- 
cutting urban stressors must be addressed to improve current and future 
urban health through actions such as urban planning, housing action 
plans, environmental policy and governance, sustainable transport and 
mobility, promoting nutritious food and increasing access to healthy 
diets, urban design to promote physical activity, strategies to manage 
pandemic such as COVID-19. This is a field where cooperation and 
knowledge sharing of solutions could make a difference as is the ambi-
tion of the WHO repository of Urban Health Resources (World Health 
Organization, 2022). 
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Environmental hazards are often concentrated in urban areas, where 
some areas are disproportionately affected by the multiple pressures of 
urban waste, air pollution, industry, and extreme weather events, often 
interacting and interconnected in producing health effects (Kjellstrom 
et al., 2007). This is relevant from a descriptive perspective to charac-
terise the vulnerability of the population, which is useful for planning 
and decision making, and from a research perspective, to analyse the 
health impacts of urban-related hazards in epidemiological studies. For 
both descriptive and analytical purposes, a finer spatial resolution al-
lows for better insights. The possibility to studying environmental ex-
posures has been exploited by spatial epidemiology in the last decade 
(Richardson et al., 2010, 2009), taking into account different exposures 
(e.g. climate, air pollution, industrial sites) and through openly available 
spatial resolution data (e.g. satellite data). 

In recent decades, borrowing methods from the social sciences, even 
in epidemiology, especially for descriptive purposes, in order to respond 
the growing need for systematic information on complex realities, at-
tempts to create synthetic and complex spatial indicators have multi-
plied. In general, these indicators have the advantage of reducing 
information from a large number of elementary variables in order to 
carry out simpler and faster analyses, especially in comparative terms. In 
epidemiology, both in Italy and in other countries, there is a solid evi-
dence base of using synthetic spatial indicators in the field of socio-
economic inequalities, demonstrating the ability of social or deprivation 
indices to capture socioeconomic disadvantage linked to worse health 
outcomes, such as life expectancy even in old age (Cabrera-Barona et al., 
2015; Cardoso-dos-Santos et al., 2018; Cesaroni et al., 2012; Lallo and 
Raitano, 2018; Lin et al., 2019; Marinacci et al., 2013; Padilla et al., 
2016; Rosano et al., 2020; Samoli et al., 2019; Sartorius and Sartorius, 
2014; Schuurman et al., 2007). It has been suggested that environmental 
exposures may contribute to amplifying health inequalities (Deguen and 
Zmirou-Navier, 2010; Slachtova et al., 2016). Although the health ef-
fects of individual environmental attributes (e.g. air pollution, traffic, 
noise) are well known (Dambha-Miller et al., 2022; Rojas-Rueda et al., 
2021; Waidyatillake et al., 2021), only few attempts to derive environ-
mental indices by analysing multiple environmental attributes simul-
taneously have been reported (Min et al., 2021; Ribeiro et al., 2015; 
Richardson et al., 2010, 2009; Saib et al., 2015). This synthesis is 
valuable in providing tools for decision makers to map and identify 
spatial injustice in urban areas due to multiple stressors on which to base 
integrated social, health and environmental prevention programs. 

However, to inform and update the spatial dynamics of many envi-
ronmental, social and economic processes together, is still rather chal-
lenging in terms of collecting reliable data for each relevant 
environmental dimension and in terms of heterogeneity of data avail-
ability and resolution in time and space (Degbelo and Kuhn, 2018). In a 
context such as Italy, the use of composite indices at the subnational 
level is particularly important in the analysis of the landscape in-
equalities that characterise our country, in terms of climate, land use, 
morphology/orography, north–south and rural–urban economic and 
industrial divide, both for an assessment of the current situation and to 
monitoring the evolution of the environmental and climatic vulnera-
bility over time. Furthermore, environmental inequalities overlap with 
geographical differences in population ageing, health outcomes and 
determinants, and access to and quality of health and social care. In 
addition, a synthesis of spatial characteristics that integrates large 
amounts of information facilitates the understanding of the context in 
which people live. 

To simplify the variety of the complex link between health and 
environmental/climatic vulnerability, one possibility is to develop a 
holistic approach by creating a new synthetic measure that captures the 
complexity of the urban landscape using fine resolution scales (Antrop, 
2000). Since “everything is related to everything else, but the near 
things are more correlated than the far things” (Tobler, 2004, 1970), the 
spatial arrangement of observations must to be take into account. The 
standard multivariate exploration technique, such as principal 

component analysis (PCA) implicitly assumes that the correlation be-
tween indicators is constant in space (stationary), thus it is not a gold 
standard for spatially varying phenomena. For this reason, a variant of 
the PCA methodology, the Geographical Weighted Principal Component 
Analysis (GWPCA), has been proposed to describe the spatial effects of 
non-stationary phenomena. In general terms, GWPCA assumes that 
there are several regions in a given spatial domain in which different and 
distinct PCAs are to be applied. In this way, it is possible to consider the 
continuous variation of the results of the multivariate analysis in space. 
GWPCA makes it possible to assess the representativeness of the global 
PCA (standard) by providing a set of locally derived principal compo-
nents at all data locations (Harris et al., 2011; Lloyd, 2010). 

In this study, we introduce a composite indicator of environmental 
and climatic spatial vulnerability to describe and summarise the main 
environmental and climatic exposures in the municipality of Rome, 
capable of providing immediate and effective information to support the 
definition and implementation of environmental health policies. 

2. Material and methods 

2.1. Study area 

Rome is the largest Italian city with a population of approximately 
2.8 million inhabitants over an area of 1.290 km2 (Italian National 
Statistics Institute, 2022). The city is characterised by a complex land-
scape with various anthropogenic and natural sources of air pollution. 
The urban landscape is very heterogeneous and it is therefore necessary 
to analyse small units in order to grasp the dynamic structure of the 
environmental exposures. For this purpose, we defined a common grid 
of 1,461 (1x1) km cells and used this as unit reference for all spatial 
predictors. 

2.2. Selection of the environmental dimensions relevant for health in 
urban areas 

To identify environmental factors associated to the health of people 
living in urban areas, an overview of reviews was carried out using three 
bibliographic databases (Medline, Embase, APA PsycInfo in OVID) from 
inception to 20 October 2022 (Appendix Part. A). From the 664 poten-
tially eligible records after duplicated removal, 129 full texts were 
assessed for eligibility leading to 73 reviews published from 2015 to 
2022 included in the narrative synthesis. The flow chart and the sum-
mary table are provided in the Appendix Part. B and Part. C, while the 
excluded reviews and those included after eligibility assessment of the 
full-text are reported in the Appendix Part. D. Overall, the review sug-
gests that, in addition to socioeconomic factors, the most relevant 
environmental determinants of population health are air pollution, 
noise, temperatures, traffic density and built environment characteris-
tics such as green spaces, and other neighborhood features (e.g., popu-
lation density) which will be considered as main components 
environmental vulnerability index for Rome. More detailed results on 
the available evidence for specific urban-related risk and protective 
factors can be found in the Appendix Part. E. 

2.3. Spatial data 

From the previous literature overview, and taking into account the 
data availability for the city of Rome, several macro dimensions were 
identified for the present analysis which differ in terms of data source 
and spatial resolution (Table 1): land use (urban and rural); roads and 
traffic related exposure; green space data; impermeable cover of soil; air 
pollutants and urban heat island intensity. Each macro dimension is 
described through a set of spatial predictors rescaled at the grid cell level 
varying over space but not over time (Table 2). 
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2.3.1. Land use data: 
We characterised each cell (1×1) km in terms of land cover classes 

based on the Corine Land Cover (CLC) (Italian National Institute for 
Environmental Protection, 2018). The CLC is a map of the European 
environmental landscape based on the interpretation of satellite images. 

It provides comparable digital land cover maps for each country and for 
large parts of Europe, with spatial resolution of (250×250) m. We used 
the following spatial predictors:  

a. Percent urban development area. We selected two CLC classes (high/ 
low development) and of each cell (1x1) km, we computed the per-
centage covered by an area of urban development.  

b. Percent rural development area. We selected several CLC classes 
(arable land, crop, pasture, agriculture, deciduous, evergreen, shrub) 
and of each cell (1x1) km, we computed the percentage covered by 
an area of rural development. 

2.3.2. Roads and traffic-related exposures 

a. Road density. We collected road density information from the Tele-
Atlas TomTom (2015) road network (FRC 0–5), by selecting high-
way, major road, secondary road, or local road according to the 
Functional Road Classification (FRC). For each class and each grid 
cell (1×1) km, we calculated the number of metres (as the sum of all 
segments) within the cell.  

b. Traffic density. We collected road traffic data provided by the 
Mobility Agency of Rome for all major roads for 2009. Road traffic 
data were representative of the rush hour and reported per arch 
(segment direction) (i) the number of passenger car equivalent (PCE) 
vehicles per hour, (ii) average speed during rush hour, and (iii) 
traffic model parameters (capacity, alpha/beta). We characterised 
the traffic density for each grid cell (1×1) km as the number of cars 
multiplied by the length of roads within the cell divided by the cell’s 
area.  

c. Traffic noise. We collected road traffic data as described above for 
the traffic density predictor. Noise estimates were calculated using 
the method from the German VBEB standard (Germany Federal 
Environment Agency, 2007). The method was applied to provide 
noise estimates each 5 m along the façade of residential buildings 
(Ascari et al., 2017). The cell-level noise estimate was obtained by 
averaging the energy of the point estimates of the building façade 
contained in the cell. As noise metrics, we calculated annual day- 
evening-night A-weighted equivalent continuous noise levels 
(Lden) and Lnight for the hours 22:00 – 06:00. Each indicator gives 
an A-weighted decibels (dBA) level as an expression of the relative 
loudness of sounds in air as perceived by the human ear. 

2.3.3. Green space data  

a. The Open Street Map (OSM) (The Open Knowledge Foundation, 
2023) information was downloaded, and the following macro areas 
were selected: land use, leisure, natural and biopark. A specific 
shapefile with parks and gardens was built. The percentage of each 
cell covered by a green area was used as a predictor of green.  

b. Normalised Difference Vegetation Index (NDVI) in 2015 was used. 
We collected the available monthly MODIS NDVI product 
(MOD13A3) at (1×1) km spatial resolution.  

c. Leaf Area Index (LAI) in 2015 was used. The index is a dimensionless 
variable given by a ratio of leaf area to per unit ground surface area; 
this value was used as an important vegetation biophysical 
parameter. 

2.3.4. Impermeable cover of soil 
The Soil Sealing Index provides information on land cover with 

impermeable material that often compromises fertile agricultural land, 
endangers biodiversity, increases the risk of flooding and water scarcity 
and contributes to global warming. Soil sealing estimates the increase in 
soil surfaces sealed with impervious materials due to urban development 
and construction (such as buildings, constructions and the laying of 
completely or partially impermeable artificial material, such as asphalt, 
metal, glass, plastic or concrete). This provides an indication of the rate 

Table 1 
Description of the spatial data for the environmental vulnerability indicator of 
the city of Rome.  

Environmental 
dimension 

Description Source Original 
Spatial 
resolution 

Land use data Land cover 
characteristics 
(urban and rural 
area) 

Corine Land Cover 
2018 https://www. 
sinanet.isprambiente. 
it 

scale 
1:100.000 

Roads and traffic 
related 
exposure  

Roads based on CLC 
Functional Road 
Classification (FRC 
0:5) (type: highway, 
major, secondary, or 
local road) 

TeleAtlas TomTom 
(2015) 

metres 

Daily vehicles per 
hour in the rush 
hour 

Urban traffic plan of 
Rome municipalities 
(2009) 

road arch 

Noise traffic level 
estimate at each 5 m 
along the façade of 
the buildings in 
which subjects lived 

Ascari et al. 2017 point (coord 
(lat,long)) 

Green space data  Urban green space 
area (type:land use, 
leisure,natural and 
biopark) 

OpenStreetMap 
(2019) 

areal (m2) 

Normalised 
Difference 
Vegetation Index 
(NDVI) 

MODIS NDVI 
(MOD12A3) (2015) 

(1x1) km 

Leaf Area Index 
(LAI) 

Image of Landsat 8 
(2015) 

(30x30) m 

Impermeable 
cover of soil 

Soil Sealing Index https://land. 
copernicus.eu/pan- 
european/high- 
resolution-layers/ 
imperviousness/ 
status-maps/2015/ 
view 

(100x100) 
m 

Air pollution PM2.5, PM10, NO2, 
C6H6, SO2 

FARM model (2018) (1x1) km 

Urban Heat 
Island 

UHI: Urban heat 
island intensity 
summer 2001-2010 

Air temperature 
derived from 
spatiotemporal 
models. 

(1x1) km  

Table 2 
Description of the spatial predictors for the environmental vulnerability indi-
cator of the city of Rome.  

Environmental dimension Indicators 

Land use data % Urban use 
% Rural use 

Roads and traffic related 
exposure 

Road density (m/m2) 
Traffic density (daily vehicels per cubic 
metre) 
Traffic noise (dBA) 

Green space data % Urban green space area 
NDVI dimensionless, values from − 1 to + 1 
LAI dimensionless, positive values 

Impermeable cover of soil % Soil Sealing Index 
Air pollution PM2.5 (μg/m3) 

PM10 (μg/m3) 
NO2 (μg/m3) 
C6H6 (μg/m3) 
SO2 (μg/m3) 

Urban heat island Urban heat island intensity (◦C)  
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of soil sealing, which occurs when areas change use to artificial and 
urban land use. 

2.3.5. Air pollution 
The following air pollutants (PM10, PM2.5, NO2, C6H6, SO2) were 

estimated using the Flexible Air quality Regional Model (FARM) for year 
2018. FARM is a three-dimensional Eulerian model that accounts for 
transport, chemical evolution and deposition of atmospheric pollutants 
(Chang et al., 1987). 

2.3.6. Urban heat island 
From multivariate spatiotemporal models, daily mean air tempera-

ture at a (1x1) km resolution was estimated from MODIS land surface 
temperature (LST) satellite data, temperature observations provided by 
monitoring networks, and spatial and spatiotemporal land use variables 
(de’Donato et al., 2018). From the (1x1) km data, the average temper-
ature for each cell over the period 2001–2010 was defined and the urban 
heat island intensity (UHI) for Rome was defined as the difference be-
tween temperatures in each grid cell and the coolest cell located in the 
rural surroundings within the Rome municipality study domain 
(de’Donato et al., 2018). 

2.4. Deprivation index 

Given the substantial contribution of socio-economic dimension on 
population health in urban areas as confirmed by the previously 
mentioned reviews (Akinyemiju et al., 2015; Besser et al., 2017; Beyer 
et al., 2015; Johnson et al., 2019; Salgado et al., 2020; Soffian et al., 
2021; Sui et al., 2022) and considering the potential effect modification 
of environmental exposure effects, to capture the relationship between 
the environmental data and the socioeconomic status we used a syn-
thetic deprivation index (Rosano et al., 2020) built using individual data 
from the 2011 General Population and Housing Census (Italian National 
Statistics Institute, 2011). The multidimensional concept of social and 
material deprivation was summarised combining indicators of five 
characteristics at the census tract level: low education level, unem-
ployment status, single parent household, rented and high-density 
housing. The index consists in the sum of standardised indicators; it 
grows with social and material disadvantage and its continuous value 
was scaled from census tract to grid cell resolution. 

2.5. Environmental and climatic vulnerability composite spatial indicator 

The Geographically Weighted Principal Component Analysis 
(GWPCA) method was used to produce a composite spatial indicator by 
integrating the environmental and climatic dimensions described above. 

This method is an extension of standard Principal Component 
Analysis (PCA) and was performed to account for spatial heterogeneity. 
Although the standard PCA analysis can provide information on the 
global internal structure, it cannot account for the fact that the covari-
ance structure of the data can change spatially (Tejedor-Flores et al., 
2020). However, both analyses were implemented. Standard PCA was 
used to reveal globally which components have eigenvalues greater than 
or very close to unity and the proportion of the variation in the data, 
then GWPCA was applied to reduce the size of the dataset (in terms of 
number of variables) by transforming the original set into a new set of 
uncorrelated variables using local covariance decomposition. 

Briefly, as a spatial multivariate technique, GWPCA takes into ac-
count non-stationarity of the spatial process (Harris et al., 2011) and is 
able to pursue several objectives: investigating spatial heterogeneity in 
the structure of multivariate data, calibrating the model, assessing how 
data dimensionally varies spatially (eigenvalue) and how the original 
variables influence each spatially varying component (eigenvectors), 
and reducing the dimensions of the data set (in terms of number of 
variables) into a new set of uncorrelated variables (Gollini et al., 2015). 
The statistical analysis was carried out in four steps described below. 

2.5.1. Step.1 
The first step was to verify the spatial non-stationarity. In order to 

diagnose the possibly presence of spatial non-stationarity or specifically 
whether the geographically weighted eigenvalues of the GWPCA vary 
significantly in space, the Monte Carlo test was conducted on a large 
number of randomised distributions (in our case 99). Moreover, uni-
variate spatial autocorrelation, a measure of spatial units clustering, was 
tested globally for all spatial predictors. In the absence of spatial auto-
correlation, the spatial allocation of observations can be assumed to be 
random. The Moran’s I estimator was used. 

2.5.2. Step.2 
The second step was to calibrate the model. The bi-square kernel 

function was used to calibrate the model. This function assigns null 
weights to observations with a distance greater than a determined 
bandwidth found through the cross-validation procedure. The cross- 
validation score was calculated for all possible bandwidth selections, 
and the optimal one was the bandwidth showing the lowest cross vali-
dation score (Gollini et al., 2015). 

2.5.3. Step.3 
Once the bandwidth was chosen, GWPCA analysis was performed. 

This technique implements a different principal component model at 
each location with a geographically weighted subset of neighbouring 
data points and computes a new set of variables to account the majority 

Table 3 
Descriptive statistics of spatial indicators for the environmental vulnerability indicator of the city of Rome.  

Environmental dimension Indicator Mean  SD  Percentiles   

5◦ 25◦ 50◦ 75◦ 95◦

Land use data % Urban use 22.4 31.7 0 0 0.5 40.5 92 
% Rural use 67.6 36 0 37.8 84.3 99.9 100 

Roads and traffic related exposure Road density (m/m2) 0.002 0.002 0 0.001 0.002 0.003 0.007 
Traffic density (daily vehicles per cubic metre) 29.4 43 0 2.1 10.2 38.8 127.3 
Traffic noise (dBA) 54.7 11.4 33 48.3 57.1 63.2 68.6 

Green space data % Urban green space area 48.9 39 0.5 9.3 43.3 94.6 100 
NDVI 0.5 0.1 0.3 0 0.5 0.6 0.7 
LAI 3.6 0.9 2.5 3 3.5 4.2 5.4 

Impermeable cover % Soil Sealing Index 15 18.8 0 0.9 5.4 25.6 54.3 
Air pollution PM2.5 (μg/m3) 13.2 2.7 9.6 10.9 12.9 15.3 18.2 

PM10 (μg/m3) 18.1 4.2 12.3 14.6 17.6 21.3 25.9 
NO2 (μg/m3) 27.2 12.9 10 17.1 24.2 37.6 50.1 
C6H6 (μg/m3) 0.9 0.4 0.4 0.6 0.8 1.1 1.7 
SO2 (μg/m3) 2.3 1.1 1.3 1.7 2 2.6 3.7 

Urban heat island UHI (◦C) 1.6 0.6 0.6 1.4 1.6 2 2.6 

SD: standard deviation. 
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of information about the original data. The eigenvalues reflect the 
variance explained by each component for each cell and were used to 
select the necessary number of components. The loadings reflect the 
spatial (local) importance of the variables, the extent of association and 
co-variability. 

The interpretation of the GWPCA results was supported with the 
visualisation method proposed by Harris et al. by mapping the propor-
tion of the variance explained by the principal components, and the 
winning variable of each PC and using multivariate glyphs to represent 
the loadings at all locations (Harris et al., 2011). 

The GWPCA method has been performed in the R platform using the 
GWmodels Package (Gollini et al., 2015; Lu et al., 2014). 

2.5.4. Step.4 
The natural breaks method was used to define eleven classes of risk, 

the first six levels identify a very low level of vulnerability, while the last 
five classes describe the level of vulnerability from the lowest to the 
highest vulnerability. 

2.6. Bivariate association with deprivation index 

The bivariate choropleth map was used to identify the spatial re-
lationships and patterns between vulnerability and deprivation index. 
Each indicator was grouped into three classes: low, medium and high. 
The indicator identified very low vulnerability as class 1, low, medium 
low and medium high as class 2, while high and very high vulnerability 
as class 3. The deprivation index was aggregated as follow: low and 
medium low as class 1, medium and medium high as class 2 and high as 
class 3. 

The number of inhabitants exposed to these levels of environmental 
and climatic vulnerability and the distribution by deprivation status was 
described. 

To investigate how the association changed over space and to cap-
ture bivariate spatial association among the vulnerability index and the 
deprivation index, Lee’s L statistical measure were calculated (Lee, 
2001). In this context, the commonly used Pearson’s correlation coef-
ficient does not capture the spatial distribution dimension of the two 
geographical variables. Our interest was to evaluate whether the 
bivariate associations were spatially clustered. The L index sums up two 
aspects of spatial correlation: first, the relationship within a pair of 
geographical variables at each location (in terms of point-to-point as-
sociation); second, the relationship between distinct pairs across loca-
tions (in terms of spatial association). The local L index was used to 

Fig. 1. The correlation network plot of environmental predictors for the environmental vulnerability indicator of the city of Rome.  

Table 4 
Summary of standard PCA results.   

Component 
1 

Component 
2 

Component 
3 

Importance of components    
Proportion of Variance explained  56.9%  11.1%  7.4% 
Cumulative Proportion of 

variance explained  
56.9%  68.0%  75.3%     

Loadings    
% Urban use  0.258  0.208  0.165 
% Rural use  0.275  0.202  0.172 
Road density  0.252  − 0.098  0.398 
Traffic density  0.254  − 0.16  0.316 
Traffic noise  0.229  − 0.228  0.296 
% Urban green  0.092  0.538  0.128 
NDVI  0.275  0.333  − 0.118 
LAI  0.204  0.4  − 0.255 
Soil Sealing Index  0.298  0.211  0.119 
PM2.5  0.303  − 0.217  − 0.214 
PM10  0.311  − 0.182  − 0.176 
NO2  0.295  − 0.276  − 0.056 
C6H6  0.297  − 0.251  − 0.057 
SO2  0.142  − 0.056  − 0.596 
UHI  0.283  0.03  − 0.223  

C. Badaloni et al.                                                                                                                                                                                                                               



Environment International 176 (2023) 107970

6

create a map and discern sub-regions into the four categories: high-high 
and low-low locations (spatial clusters) and high-low and low–high lo-
cations (spatial outliers). 

3. Results 

The Figs. (1 to 16) in the Appendix Part. F displays the spatial dis-
tributions in exposure of all environmental input variables, while 
Table 3 shows the descriptive statistics of spatial indicators used to build 
the vulnerability index. 

Fig. 1 describes the correlation network between spatial predictors, 
green lines showing the positive correlation, red lines negative corre-
lation and the thickness documenting the magnitude of the correlation. 
Traffic-related air pollutants, as PM10 (p10), PM2.5 (p25), NO2 (no2), 
C6H6 (ben), are highly correlated with each other, while SO2 (so2) (in-
dustrial-related pollutant) is less correlated and far from the other pol-
lutants. On the contrary, the green predictors like NDVI (ndv), LAI (lai) 
and urban green (vrd) are negatively related with air pollution and also 
negatively correlated with soil sealing. 

The spatial non-stationarity was tested with a Monte Carlo test 
(Fig. 1 in Appendix Part. F), specifically to verify whether the 
geographically weighted eigenvalues of the GWPCA varied significantly 
in space. The observed p-value of the local eigenvalues of the GWPCA is 
0.03, therefore it is reasonable to reject (at the 95% level) the spatial 
invariance hypothesis of the local eigenvalues, confirming a certain 
degree of spatial non-stationarity in the spatial predictors of environ-
mental vulnerability. 

The spatial positive autocorrelation was tested for all dimensions 
with the Moran’s I (p-value ~ 0) (Table 1 in Appendix F). 

The calibration of the GWPCA model was performed using the bi- 
square kernel function. Particularly, the optimal adaptive bandwidth 
of 903 units was automatically found through a ‘leave-one-out’ cross- 
validation (CV) approach. 

Once the non-stationarity was tested and the bandwidth had been 
chosen, PCA and GWPCA analysis were performed. Standard PCA re-
veals that the first three components collectively account for 75.3% of 
the variation in the data (Table 4). The loadings distribution suggests an 
interpretation of each component. Component 1 appears to represent air 

pollution, mainly PM10 and Soil Sealing Index; component 2, green 
space areas and component 3, industrial air pollution (SO2) and road 
and traffic-related exposures. The PCA statistics and interpretations 
refer to the whole Rome municipality (Gollini et al., 2015) and represent 
an average value, which may not reliably show the local data structure 
of each km2. 

Fig. 2 represents the spatial distribution of the local percentage of 
variance explained by the first three principal components of the 
GWPCA. The total percentage of variance (PTV) explained ranges from 
71.8% to 81.7% with an average value of 78.2%. 

In general, the percentage of variance explained in the GWPCA is 
higher than the percentage of variance explained in the standard PCA 
(75.3%). Fig. 2 shows a geographical variation in the local percentage of 
explained variance, with the higher percentages (~80%) located in the 
northern areas and the lowest percentages (below 74%) located in the 
south-western areas (in the seaside area). 

To investigate how the original variables influence each spatially 
varying component (eigenvectors), we mapped the highest absolute 
local (in each km2 pixel) loadings (winning variables) into each of the 
three geographically weighted principal components (Fig. 3 a-b-c). The 
winning variables suggest which are the most important variables 
influencing the final indicator. For example, in the map a) the dark blue 
area indicates the (1x1) km pixels where soil sealing was the winning 
variable in the first component of the local GWPCA. 

The visualisation maps of the winning variables for the three GWPCA 
components provide information on the influence of spatial spread in 
the study area, confirming the urban characterisation of Rome, with 
different variables affecting different parts of the city (Harris et al., 
2011). 

The environmental vulnerability composite spatial indicator has 
been visualised in Fig. 4 as a map resulting from the GWPCA model. The 
synthetic value of the indicator captures the spatial variability of the 
territory, highlighting the areas of greatest urban-related hazards in the 
city of Rome. The map shows greater environmental and climatic 
vulnerability in the city centre, with a decreasing gradient of vulnera-
bility from the centre to the periphery. 

Table 5 describes the percentage of the resident population (of all 
ages) exposed to different levels of the environmental and climatic 

Fig. 2. Spatial variation in the amount of variance explained by the first three components from GWPCA.  
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vulnerability composite spatial indicator. The first six levels (from 1 - 
dark blue to 6 - grey) identify very low level of vulnerability, while the 
next five levels (from 7 - light purple to 11 - dark purple) describe five 
classes of vulnerability from low to very high. The majority of residents 
(56%) live in areas with high or very high levels of environmental and 
climatic vulnerability. 

The proportion of the population exposed to the environmental 
vulnerability by deprivation level (Table 6) highlights an inverse 
pattern, with a larger share of the deprived population in lower envi-
ronmental and climatic vulnerability levels, and viceversa, a higher 
fraction of the population exposed to higher environmental and climatic 
vulnerability levels in low deprivation areas. Overall, 13% of population 
with high deprivation lives in areas at very high risk for environmental 
and climatic vulnerability. 

The bivariate choropleth maps (Fig. 5) visualise the spatial rela-
tionship between environmental and climatic vulnerability and depri-
vation. Low deprivation is represented by light (low) to dark (high) 
values of a red hue, while environmental and climatic vulnerability is 
represented by light (low) to dark (high) values of a purple hue. The 
resulting matrix of mixed colours identifies areas with high levels of 
both indices, low levels of both indices, and areas with all the other 
combinations of the two mapped indices (low-medium, low–high, 

medium–low, medium-medium, medium–high, high-low, high-me-
dium). Fig. 5 suggests the presence of spatial clusters with both envi-
ronmental and social vulnerability in eastern area of Rome, and in the 
western area (the Pisan area) and towards Malagrotta. The eastern areas 
are confirmed as spatial cluster for both indicators according to the L 
statistic (Lee) (Figure 18 in Appendix Part. F). 

4. Discussion 

Urban areas are locations of strong anthropic pressures on climate, 
soil, air, water and ecosystems producing multiple environmental ex-
posures such as air pollution, traffic noise, heat waves, lack of green 
space, urbanicity. All these hazards, often interacting with each other, 
may have a number of adverse health effects with stronger evidence on 
cancer and on cardiovascular, metabolic and respiratory outcomes in 
both the general population and on specific vulnerable groups, but there 
is also emerging evidence on pregnancy outcomes, mental health, 
cognitive and behavioral problems in children, and cognitive decline 
among the elderly (Achilleos et al., 2017; An et al., 2018; Attademo 
et al., 2017; Babadjouni et al., 2017; Bernardini et al., 2020; Dendup 
et al., 2018; Jia et al., 2021; Lam et al., 2021; Li et al., 2016; National 
Toxicology, 2019; Rojas-Rueda et al., 2021; Rugel and Brauer, 2020; 

Fig. 3. The winning variables: the highest absolute loading on local Component 1(a) Component 2(b) Component 3(c) of the GWPCA.  
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Salgado et al., 2020; Stieb et al., 2020; Vilcassim et al., 2021; Waidya-
tillake et al., 2021; Wimalasena et al., 2021; Yang et al., 2021; Zhu et al., 
2020). 

In this context, a summary measure of environmental vulnerability is 
able to capture not only the effect of single exposures, but also the 
combined risk perhaps greater than the sum of all contributing hazards. 
This study has developed and calibrated a new vulnerability and cli-
matic indicator for the city of Rome that appears to be able to capture 
the complex interactions between exposures across space, exploiting 
advanced statistical techniques namely the Geographically Weighted 
Principal Component Analysis. With almost 60% of the resident popu-
lation classified as living in high and very high vulnerability areas, the 
indicator identifies the most vulnerable areas to be prioritized with 
policies that address environmental inequalities. The fine spatial reso-
lution of (1x1) km allows for a lower spatial unit than commonly 
considered, i.e. census tract, district, and reduce the magnitude of the 
misclassification error in attributing spatial exposures to the individual 
level. As expected, the highest environmental and climatic vulnerability 
is found in the city centre, where the urban heat island effect, traffic and 
noise pollution, soil imperviousness and lack of green spaces are great-
est, but there are also clusters of risk in the western part of the city, near 

the landfill of Malagrotta, and in the industrial corridor in the eastern 
part of the city, already recognized as highly polluted areas and related 
to a higher mortality risk (Cesaroni et al., 2013; Michelozzi et al., 1998). 

It is worth considering that urban-related environmental exposures 
have a number of adverse effects on the resident population as consis-
tently showed by the overview of reviews (Achilleos et al., 2017; An 
et al., 2018; Attademo et al., 2017; Babadjouni et al., 2017; Bernardini 
et al., 2020; Dendup et al., 2018; Dzhambov and Dimitrova, 2018; Jia 
et al., 2021; Lam et al., 2021; Li et al., 2016; National Toxicology, 2019; 
Rojas-Rueda et al., 2021; Rugel and Brauer, 2020; Salgado et al., 2020; 
Stieb et al., 2020; Tortorella et al., 2022; Vilcassim et al., 2021; Wai-
dyatillake et al., 2021; Wimalasena et al., 2021; Xu et al., 2018, 2016; 
Yang et al., 2021; Zhu et al., 2020). In particular green spaces may 
reduce the risk of maternal and child-related outcomes (Akaraci et al., 
2020; Hu et al., 2021; Islam et al., 2020; Lee et al., 2020; Luque-Garcia 
et al., 2022; Nguyen et al., 2021; Vanaken and Danckaerts, 2018; Ye 
et al., 2022; Zhang et al., 2022) and of chronic diseases (Chen et al., 
2022; De la Fuente et al., 2021; DenBraver et al., 2018; Dendup et al., 
2018; Geneshka et al., 2021; Islam et al., 2020; Kabisch et al., 2017; Lam 
et al., 2021; Mmako et al., 2020; Nguyen et al., 2021; van den Bosch and 
Ode Sang, 2017; Ye et al., 2022; Zhang et al., 2022), and improve mental 

Fig. 5. Bivariate map between environmental and climatic vulnerability and 
deprivation indicators. 

Fig. 4. The environmental and climatic vulnerability composite spatial indi-
cator of the city of Rome. Legend shows categories of environmental vulnera-
bility index (natural breaks) from low (1 - dark blue) to high (11 - dark purple). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 5 
The population distribution by environmental and climatic vulnerability com-
posite spatial indicator.  

Environmental and climatic 
Vulnerability indicator 

% of population 
exposed 

Cumulative 
% 

Very low 10% 10% 
Low 8% 18% 
Medium low 12% 30% 
Medium high 14% 44% 
High 33% 77% 
Very high 23% 100%  

Table 6 
The percentage of population exposed to environmental and climatic vulnera-
bility by deprivation level.  

Deprivation 
indicator 

Vulnerability environmental and climatic indicator 

Very 
low 

Low Medium 
low 

Medium 
high 

High Very 
High 

1: low 8.3% 18.3% 13.6% 12.3% 24.8% 24.5% 
2 14.9% 15.6% 26.9% 22.0% 18.1% 23.0% 
3 17.9% 16.9% 23.3% 16.3% 18.6% 26.5% 
4 30.8% 22.4% 18.4% 28.2% 20.1% 12.9% 
5: high 28.1% 26.8% 17.8% 21.2% 18.3% 13.2%  

100% 100% 100% 100% 100% 100%  
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health (Bonaccorsi et al., 2022; Bray et al., 2022; Kabisch et al., 2017; 
Sokale et al., 2022; van den Bosch and Ode Sang, 2017; Vanaken and 
Danckaerts, 2018; Zhang et al., 2022) and general wellbeing (Bogar and 
Beyer, 2016; Bonaccorsi et al., 2022; Nguyen et al., 2021; Padeiro et al., 
2022; Zhang et al., 2022). This large body of evidence confirms that 
health impacts and potential benefits are greatest among vulnerable 
groups, such as children and adolescents, the elderly, people with 
chronic diseases or those living in deprived areas with limited resources. 
Moreover, there is a complex interplay between environmental and so-
cioeconomic factors that represent another key risk factor for health in 
urban areas (Akinyemiju et al., 2015; Besser et al., 2017; Beyer et al., 
2015; Johnson et al., 2019; Salgado et al., 2020; Soffian et al., 2021; Sui 
et al., 2022). 

In the present study, the environmental and climatic vulnerability 
indicator seems to be complementary to the deprivation index (Rosano 
et al., 2020), whereby in Rome the social deprivation follows an inverse 
centre-periphery trend, this the opposite trend compared to the envi-
ronmental vulnerability. The bivariate map of the two risks therefore 
adds new insights for the identification of the vulnerable population, 
with clusters of both risks in some eastern and western areas of the city, 
being the basis for guiding policies addressing both vulnerabilities. 

With the aim to build an increasingly sensitive tool, the environ-
mental and climatic vulnerability indicator is a flexible tool that can be 
extended to include additional environmental exposures. Moreover, to 
support public health policies, as exemplified by the social- 
environmental vulnerability bivariate analysis, our index can be inte-
grated with data on health outcomes, health risk behaviours, prevention 
interventions, by providing a risk stratification tool of the population 
and representing a potentially interactive and open source data tool for 
population-level analysis and community estimates of health measures 
at different spatial level (municipality, city district, census tracts, and 
zip code) such as the PLACE dashboard of the US CDC (US CDC, 2022). 
Thanks to public availability of many environmental data, this tool 
could be replicated to all urban areas of Lazio region (Cartone and 
Postiglione, 2021) where there is a novel interactive open data tool on 
health outcomes (https://www.opensalutelazio.it/) (Lazio Region and 
Department of Epidemiology of Lazio Region, 2023) in which the 
environmental vulnerability and climatic indicator could be integrated, 
and it could also be replicated in other areas of Italy. Moreover, 
considering the clusters of vulnerability in areas of the city characterized 
by severe industrial pressure, if air dispersion modelling data from main 
industrial sites become available, this may be another area of 
improvement of the vulnerability indicator. Another potential devel-
opment of the tool is the possibility to carry out etiological studies on 
health outcomes in different life stages, using the birth cohort PiccoliPiù 
(Farchi et al., 2014) and the longitudinal Rome study data (Cesaroni 
et al., 2012) that are enriched by an amount of individual characteristics 
which are modifiers or mediators of the exposure-health associations. 

We proposed Geographically Weighted Principal Component Anal-
ysis (GWPCA) to reduce the dimensionality of the data and to capture 
the maximum information present in the original spatial phenomena. 
This technique allows to capture the spatial variability of the data better 
than standard PCA, allowing for a greater percentage of explained 
variance (78.2%-GWPCA vs 75.3%-PCA). In spatial analysis, according 
to Tobler’s first law of geography (Tobler, 2004, 1970), understanding 
the geographical variation of environmental dimensions is of clear 
importance to support policy planning for environmental health. As 
spatial data, all sets of indicators vary locally and have a location (x,y) 
associated with each measurement, as they contain information on 
geographical position and environmental dimensions (Demšar et al., 
2013). Therefore, attributes in some locations tend to be related among 
each others (Demšar et al., 2013). These two properties, called spatial 
heterogeneity and spatial autocorrelation, drive the inclusion of a 
geographical dimension in our analysis and suggest the need to exploit a 
variant of the standard PCA methodology. The GWPCA includes infor-
mation on spatial heterogeneity and captures the spatial effects of non- 

stationary phenomena. In general terms, GWPCA assumes that in a given 
spatial domain there are several regions where different and distinct 
PCAs are to be applied. This makes it possible to consider the continuous 
variation of results in space. The GWPCA allows the representativeness 
of the standard PCA to be assessed by providing a set of locally derived 
principal components for all data locations (Harris et al., 2011; Lloyd, 
2010). Thus, the final environmental and climatic vulnerability com-
posite indicator depends on local environmental circumstances and the 
variables are weighted differently according to their significance for 
each grid cell. Therefore, the GWPCA index displays a sum of different 
phenomena and compares the values across space, where each grid cell 
is related to its neighbouring cells. 

Despite synthetic environmental and climatic vulnerability indicator 
represent a unique opportunity to provide easy-to-read information to 
policy makers and have the added value to taking into account several 
exposures at the same time, there are some challenges. One aspect is the 
interpretation of data values that result from complex statistical 
reshaping of data and are dimensionless. Another issue is the hetero-
geneity of the original data in terms of period, spatial resolution and 
data source, with each variable affected by a specific measurement 
error. Regarding the interpretability of the combined indicator values, it 
is important to note that the GWPCA technique compared to standard 
PCA allows for a better interpretation of data through the use of the 
winning variables that support the characterization of the local city 
structure, with different variables dominating in different areas, as 
suggested by Harris (Harris et al., 2011). Another critical aspect con-
cerns the potential misclassification bias in the attribution of spatial 
exposure at the individual level by linking the vulnerability indicator to 
residential address that could be affected by errors in the geolocation 
and in the information of address available in the population archives 
(Delmelle et al., 2022). 

In conclusions, the study demonstrates the feasibility of developing a 
combined environmental and climatic vulnerability tool in the city of 
Rome, one of the largest urban areas in Europe, characterised by a wide 
range of different landscapes and multiple environmental stressors. The 
tool has enabled the identification of at risk areas and population sub-
groups in the city and can be integrated with other vulnerability di-
mensions, such as social deprivation, providing the basis for risk 
stratification of the population and the design of policies to address 
environmental and social injustice. Future advancements of the tool 
include integration with health data and other risk factors (e.g. lifestyle) 
and the extension of the indicator to other areas of the Lazio region and 
the entire country could be envisaged. 

CRediT authorship contribution statement 

Chiara Badaloni: Conceptualization, Methodology, Formal analysis, 
Writing – original draft, Writing – review & editing. Manuela De Sario: 
Investigation, Writing – original draft, Writing – review & editing. 
Nicola Caranci: Resources, Data curation. Francesca de’ Donato: Re-
sources, Data curation. Andrea Bolignano: Resources, Data curation. 
Marina Davoli: Supervision, Validation. Letizia Leccese: Software, 
Visualization. Paola Michelozzi: Conceptualization, Supervision, Vali-
dation. Michela Leone: Conceptualization, Writing – original draft, 
Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

C. Badaloni et al.                                                                                                                                                                                                                               

https://www.opensalutelazio.it/


Environment International 176 (2023) 107970

10

Acknowledgements 

Authors would like to thank Simona Ricci for her support in graphic 
design and Patrizia Compagnucci for her help in articles retrieval for the 
literature overview. Project carried out with the technical and financial 
support of the Ministry of Health – PNC “Cobenefici di salute ed equità a 
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