

GLOBALISATION AND HEALTH TECHNOLOGY ASSESSMENT 21-24 June 2009 Suntec Singapore International Convention & Exhibition Centre www.htai2009.org

Evaluating "immature" technologies: grading uncertainty and informing the Coverage with Evidence Development Option

The case of the da Vinci Robot

L. BALLINI – S.MINOZZI – <u>A. NEGRO</u> – GP. PIRINI– R.GRILLI Regional Agency for Health and Social Care Emilia-Romagna

Evaluating Immature Technologies: The da Vinci Robot project (2007)

Objective

 clinical indications for which at the moment the technology would not offer considerable advantages

 clinical indication for which the technology seems to offer considerable advantages

4

• monitoring of scientific literature

• research programmes

RegioneEmilia-Romagna

The "Coverage with Evidence Development" option

How to balance

Cost of waiting for better information

Cost of premature diffusion

Delay / denial of effective care Spread of ineffective / harmful care

Withdrawing a service is more difficult than witholding it

When should CED be used ?

- Does current evidence suggest that the innovation is better than current practice ?
- Is collection of more information worthwhile ?
- Should we wait for more information ?

is suggested that CED is best suited to the following circumstances: where there are reasonable grounds for believing that a technology will offer significant benefits but there is uncertainty around the clinical or cost-effectiveness of the technology that can be overcome through evidence that can be generated in an appropriate time frame, and is the main source of equivocality in a coverage decision.

International Journal of Technology Assessment in Health Care, 23:4 (2007), 425-435.

A powerful tool for Evidence-Based Decision Making

• The questions:

- Is it going to be effective ?
- Is the context appropriate ?
- Is it going to be economically sustainable ?
- The information:
 - Research results
 - Context's attributes
 - Economic analyses
- The tools to interpret / use the information:
 - Index of trialability
 - Index of context's adequacy
 - Index of sustainability

Evaluating Immature Technologies

- the rationale of the technology
- the dimensions to be evaluated
- the relevant outcomes for each dimension
- the appropriate comparator
- the appropriate study design for each outcome

"EVIDENCE PROFILE"

Dimension	Outcome		Study design
Clinical	Primary outcomes		RCT
effectiveness	Remission, recurrence, survival		ССТ
	Secondary outcomes		RCT
	Functional		ССТ
Post-operative complications		ons	Controlled case series
	Quality of life		
	Surgical outcomes		RCT
	Radicality		ССТ
	Adequate dissection / lymphadenectomy		Controlled case series
	Adequate margins		
Safety	Peri-operative complications		RCT
	Blood loss		ССТ
	Transfusions		Controlled case series
	Re-intervention		Uncontrolled case series
Feasibility	Operating time	Length of Stay	
	Conversion to	Learning curve / training	Controlled case series
	laparoscopy	Costs	Uncontrolled case series
	Conversion to open surgery		

"Evidence profile" and Review of Literature

Rationale: Conservative surgery's better performance than open or laparoscopic surgery for surgical intervention on very small fields

CLINICAL APPROPRIATENESS

Surgical efficacy

Clinical effectiveness

Immature Technologies and the synthesis of studies' results

Given that no quantitative synthesis is feasible

- What to make of results ?
- How to present results ?
- How to say something meaningful ?
- Is it possible to describe uncertainty?

Looking for a way to "grade" uncertainty

The risk of non-effectiveness **The information**: results from literature review

Classifying uncertainty

results that are highly unlikely to be changed by further studies

Plausibly stable results

consistent results, coming from sufficiently numerous observational studies, which would probably not change significantly if evaluated through randomised clinical trials

Uncertain results

results that would most probably change, in both size and direction of estimate, if evaluated through randomised clinical trials

Unknown results

unreported or non-existent results on outcomes judged by the panel to be relevant for the evaluation of the technology

Synthesis of literature review's results

Robotic surgery: results

CLINICAL APPROPRIATENESS

Surgical efficacy	Clinical effectiveness		
Technical Feasibility Safety Performance	Impact on Surgical Clinical Cost – Surgical outcomes outcomes effectiveness complications		
PLAUSIBLY STABLE RESULTS	Possible research areas		

Exclusion based on trialability index:

Thoracic Surgery Gastrectomy

Exclusion based on relevance of outcomes:

Cholicistectomy Fundoplication Urological surgery Gynecological surgery Bariatric surgery Colon surgery Rectal surgery

The "acceptable" uncertainty

The tool: trialability index

Cut-off point at which Results > plausibly stable are accepted

(or from which plausibly stable results are not accepted / sufficient)

🔁 RegioneEmilia-Romagna

Is the context appropriate ? Possible locations of the da Vinci robot:

Is it going to be sustainable? The information: costs

Break even point

Table 1: Fixed costs

Amortization	210.000,00
Maintenance	168.000,00
Rentals	0,00
Others	0,00
Total fixed costs	378.000,00

Table 2: Variable costs

	Cost of 1 unit of production
Cost of hospital stay (2 days)	800,00
Cost of personnel	815,72
Cost of disposable	1.916,65
Intermediate clinical services costs	27,20
overheads	251,30
Total variable costs for 1 unit of	3.810,87
production	,

The tool: Break Even Analysis

Da Vinci robot project: conclusions

EXCLUDED

Diffusion in clinical practice Further acquisitions outside of approved regional programmes of training and research

Clinical use only within formal trials

Training

ACQUIRE IF :

- . Economic resource available over few yrs
- . Inter dipartmental location
- . Trained expert surgeons available
- . Participation to RCTs viable
- . Monitoring + evaluation programmes

DISMANTLE IF :

- . Under-use or mono-disciplinary use
- . Trained surgeons not present
- . Small volumes of activities
- . Lack of infrastructure for participation to
 - research programmes

The role of Experts Evaluation of Immature Technologies:

definition of the potential clinical use of a technology

Experts define the evidence profile

Agree on clinically relevant outcomes

Define the research needs

Da Vinci robot project: outputs

= biochemical failure, recurrence

Colectomy

< post – operative complications: conversions to open/laparoscopic

= recurrence

RegioneEmilia-Romagna

Thank you

anegro@regione.emilia-romagna.it

PROCESS FOR THE EVALUATION OF AN EMERGING TECHNOLOGY

Step	Process	Output
Step 1	 Technical description of the technology Definition of relevant outcomes Systematic review of literature 	 List of clinical outcomes ranked by level of importance Full systematic review of all published literature on selected clinical indications
Step 2	-Quantity and quality of published research results by clinical indication for each outcome	-Evidence mapping
Step 3	 Definition of exclusion criteria: a)cut off-line above which level of uncertainty is considered too high to carry out research programmes; b)outcomes considered of insufficient clinical value 	-List of excluded clinical applications
Step 4	 Data report on volumes of activity and size of potential population target Distribution of organisational excellence and professional expertise 	-Context mapping
Step 5		-Clinical indications for research

Identify relevant research questions

Evidence mapping allows to exclude clinical indications on the basis of explicit criteria:

- Clinical criteria
 - The cut-off line for "acceptable uncertainty"
 - The relevance of the clinical outcomes
- Criteria related to context
 - Data on population targets + volumes of activity
 - Areas of clinical + research excellence

