

Sorveglianza dell'antibioticoresistenza e uso di antibiotici sistemici in Emilia-Romagna rapporto 2023

Sorveglianza dell'antibioticoresistenza e uso di antibiotici sistemici in Emilia-Romagna rapporto 2023

Il **volume** è curato e edito dal Settore innovazione nei servizi sanitari e sociali.

Può essere scaricato dal **sito web** <u>Innovazione sanitaria e sociale</u>

Stampa Centrostampa - Regione Emilia-Romagna, Bologna

Settembre 2024

Chiunque è autorizzato per fini informativi, di studio o didattici, a utilizzare e duplicare i contenuti di questa pubblicazione, purché sia citata la fonte.

A cura di

CARLO GAGLIOTTI Settore innovazione nei servizi sanitari e sociali, Regione Emilia-

Romagna

ROSSELLA BUTTAZZI Settore Risorse umane e strumentali, infrastrutture - Regione Emilia-

Romagna

ENRICO RICCHIZZI Settore innovazione nei servizi sanitari e sociali, Regione Emilia-

Romagna

MAURIZIA ROLLI Settore innovazione nei servizi sanitari e sociali, Regione Emilia-

Romagna

ELENA VECCHI Settore prevenzione collettiva e sanità pubblica, Regione Emilia-

Romagna

SIMONE AMBRETTI Azienda ospedaliero-universitaria di Bologna

EDOARDO CARRETTO Azienda USL di Reggio Emilia

MONICA CRICCA Azienda USL della Romagna

GIULIANA LO CASCIO Azienda USL di Piacenza

MARIO SARTI Azienda ospedaliero-universitaria di Modena
CLAUDIA VENTURELLI Azienda ospedaliero-universitaria di Modena

Hanno collaborato

SIMONE AMBRETTI Azienda ospedaliero-universitaria di Bologna

MARCO ANTONACI Azienda ospedaliero-universitaria di Parma

AGOSTINO BAROZZI Azienda AUSL di Modena

FABIANO BENEDETTI Azienda ospedaliero-universitaria di Modena

EDOARDO CARRETTO Azienda USL di Reggio Emilia
MONICA CRICCA Azienda USL della Romagna
MICHELA FANTINI Azienda USL della Romagna

FABRIZIO FRIGERI Azienda ospedaliero-universitaria di Modena

STEFANO GANDOLFI Azienda USL di Piacenza
VITTORIO GARBESI Azienda USL di Parma

MASSIMO GRILANDA Azienda ospedaliero-universitaria di Ferrara

PAOLO IANNONE Azienda USL di Parma

GIUSEPPINA LANCIOTTI Settore Risorse umane e strumentali, infrastrutture - Regione Emilia-

Romagna

GIULIANA LO CASCIO Azienda USL di Piacenza
GILIOLA MAINI Azienda USL di Bologna

Sorveglianza dell'antibioticoresistenza e uso di antibiotici sistemici in Emilia-Romagna Rapporto 2023

MONICA MALPELI Azienda USL di Parma

SERGIO MEZZADRI Azienda USL di Reggio Emilia
PAOLA NARDINI Azienda USL di Reggio Emilia

GIUSEPPINA PAGLIARELLO Azienda ospedaliero-universitaria di Parma

ROBERTO PORA Azienda ospedaliero-universitaria di Ferrara

ROSALBA RICCI Azienda USL della Romagna
GIUSEPPE RUSSELLO Azienda USL di Reggio Emilia

MARIO SARTI Azienda ospedaliero-universitaria di Modena

ROBERTA SCHIAVO Azienda USL di Piacenza

MONICA SETTI Azienda ospedaliero-universitaria di Modena

SILVIA STORCHI INCERTI Azienda USL di Reggio Emilia
NASTIA TOMMASINI Azienda USL della Romagna
DANIELE TROMBETTI Azienda USL della Romagna

CLAUDIA VENTURELLI Azienda ospedaliero-universitaria di Modena

per la gestione del flusso informativo LAB

LUCA CISBANI Settore Risorse umane e strumentali, infrastrutture - Regione Emilia-

Romagna

GIOVANNA PISCITELLI Settore Risorse umane e strumentali, infrastrutture - Regione Emilia-

Romagna

MASSIMO CLÒ Settore Risorse umane e strumentali, infrastrutture - Regione Emilia-

Romagna

Indice

Indice	8
Sommario	10
Abstract	13
Figure e tabelle	16
Parte I - Sorveglianza dell'antibioticoresistenza	19
Rappresentatività del sistema di sorveglianza	20
Quantificazione dell'attività laboratoristica di batteriologia	
Tasso di incidenza di batteriemia in ambito regionale	22
Gram negativi: enterobatteri	
Altri microrganismi Gram negativi	
Microrganismi Gram positivi	
Parte II - Uso di antibiotici sistemici in Emilia-Romagna	
Uso di antibiotici sistemici in Emilia-Romagna	36
Consumi territoriali (AFT/FED)	
Consumi ospedalieri (AFO)	
Bibliografia	
Appendici	
Appendice 1. Metodologia	
Antibioticoresistenze	
Uso di antibiotici	51
Appendice 2. Antibioticoresistenza	54
RESISTENZE PER MATERIALI	
RESISTENZE COMBINATE	64
VOLUME ATTIVITÀ NEGLI ANNI	69

Sorveglianza dell'antibioticoresistenza e uso di antibiotici sistemici in Emilia-Romagna Rapporto 2023

Sommario

In questo rapporto sono presentati i dati aggiornati al 2023 del sistema di sorveglianza delle antibioticoresistenze (LAB) e dell'assistenza farmaceutica territoriale e ospedaliera (AFT, FED e AFO) della Regione Emilia-Romagna. Vengono inoltre forniti gli indicatori per il monitoraggio del consumo di antibiotici, definiti in ambito europeo (ECDC/EFSA/EMA, 2017): rapporto fra antibiotici a spettro di azione ampio/ristretto (ambito territoriale); percentuale di antibiotici a elevato impatto sulle resistenze (ambito ospedaliero).

Il numero di colture batteriche inviate ai laboratori nel 2023 risulta in ulteriore crescita rispetto al 2022, dopo la netta flessione osservata nel 2020-2021. Anche il tasso di batteriemia, dopo il calo registrato in corso di pandemia da COVID-19, è significativemente aumentato con un picco nel 2023 (478 su 100.000 abitanti). Per alcuni microrganismi, in continuità con quanto osservato nei due anni precedenti, l'aumento dei tassi di batteriemia osservato nel 2023 rispetto al periodo prepandemico (anno 2019 preso come riferimento) appare particolarmente significativo: *Enterococcus faecium* +52%; *Candida spp.* +56%; *Klebsiella pneumoniae* +54%. Confrontando il 2023 con il 2022, si osserva invece una lieve flessione dei tassi di batteriemia per *Staphylococcus aureus* ed *Enterococcus faecalis*.

Per *Escherichia coli* si osserva nel 2023 un incremento delle percentuali di resistenza a cefalosporine di terza generazione (23.3%) rispetto al 2022 (21.8%) dopo la riduzione registrata nei tre anni precedenti. Sia la percentuale di resistenza sia il tasso di batteriemia da *E. coli* resistente alle cefalosporine di terza generazione restano comunque a livelli significativamente inferiori a quelli osservati nel 2019. Tendenze simili si osservano anche per le resistenze di *E. coli* ad amoxicillina associata ad acido clavulanico, flurochinoloni e aminoglicosidi. Prosegue invece la tendenza positiva della percentuale di resistenza di *K. pneumoniae* ai carbapenemi che è passata dal 23,5% del 2016 al 7,0% del 2023, sebbene con un incremento del numero di episodi di batteriemia pari a 141 nel 2023 (era stato pari a 250, 256, 176, 141, 122, 122 e 109 nei sette anni precedenti). La resistenza di *K. pneumoniae* ai carbapenemi ha avuto un andamento bimodale: dopo una significativa riduzione registrata nel 2012, a seguito della campagna regionale per il controllo degli enterobatteri produttori di carbapenemasi (Gagliotti et al., 2011, 2012, 2013, 2017; Ragni et al., 2011), si era verificato un temporaneo incremento nel periodo 2013-2015, seguito da un'ulteriore

riduzione a partire dal 2016. Nel 2023, la tipologia di carbapenemasi rilevata più frequentemente in *K. peumoniae* è KPC (più del 70% degli isolati del 2023 in cui il dato è disponibile); seguono le metallo beta-lattamasi (in particolare NDM) e OXA-48-like. Sempre per *K. pneumoniae* si osserva però un notevole incremento della percentuale di resistenza a piperacillina-tazobactam, tornata ai livelli del 2016, in parte dovuto alla produzione di betalattamasi non ESBL e non AmpC attive sugli inibitori ma non sulle cefalosporine di III/IV generazione. Tale incremento ha preoccupanti risvolti clinici vista la rilevanza di piperacillina-tazobactam nella gestione delle infezioni in ospedale.

Per *Acinetobacter baumannii* resistente ai carbapenemi, il numero di episodi di infezione ha mostrato una progressiva riduzione: batteriemie (138 episodi nel 2016, 110 nel 2019, 78 nel 2022 e 67 nel 2023); infezioni polmonari (360 episodi nel 2016, 199 nel 2019, 112 nel 2022 e 93 nel 2023). Negli ultimi anni si osserva invece un incremento degli isolati di *Pseudomonas aeruginosa* resistente ai carbapenemi dopo la riduzione osservata in precedenza: batteriemie (86 episodi nel 2015, 71 nel 2019, 87 nel 2022 e 112 nel 2023); infezioni polmonari (348 episodi nel 2015, 115 nel 2019, 182 nel 2022 e 203 nel 2023).

Per quanto riguarda *Staphylococcus aureus*, la percentuale di MRSA (*S. aureus* resistente alla meticillina, definito nel rapporto come resistente a oxacillina) appare in progressiva riduzione nell'intero periodo di osservazione 2016-2023, raggiungendo nel 2023 un valore pari a 21.9% (isolati da sangue). Il tasso di batteriemia da MRSA mostra una tendenza in calo meno netta; ciò indica come parte della riduzione della percentuale di MRSA sia determinata dall'aumento dei tassi di batteriemia da MSSA (*S. aureus* sensibile alla meticillina). Per *E. faecium* resistente a vancomicina, si conferma invece la tendenza in netto incremento sia della percentale di resistenza (35,2% nel 2023; 10,3% nel 2016 negli isolati da sangue) sia del tasso di batteriemia. Risultano infine stabili pur con una lieve riduzione rispetto al 2022 le resistenze di *Streptococcus pneumoniae* a penicillina e a eritromicina (rispettivamente 3,0% e 21,5% negli isolati da sangue del 2023).

I consumi di antibiotici sistemici in ambito territoriale, già in riduzione prima della pandemia di COVID-19, hanno registrato una contrazione anomala nel 2020 e nel 2021 (rispettivamente -28% e -31% rispetto al 2019). Tale tendenza si è modificata nel 2022 (+29% rispetto al 2021) in concomitanza con l'allentamento delle misure anti COVID-19, e nel 2023 (+10% rispetto al 2022). L'incremento osservato nel 2023 ha riportato i consumi a livelli simili a quelli pre-pandemici (13,3 DDD/1.000 abitanti-die nel 2023

versus 13,6 DDD/1.000 abitanti-die nel 2019). Il rapporto tra consumi di antibiotici a spettro ampio e antibiotici a spettro ristretto rimane elevato e superiore a quello registrato nel 2019, nonostante vi sia stata una lieve riduzione negli ultimi due anni. Si osserva inoltre una importante variabilità tra aziende sanitarie. Per migliorare l'appropriatezza prescrittiva in ambito territoriale è stato recentemente istituito in Emilia-Romagna un Gruppo di lavoro multiprofessionale che, nell'ambito del Piano regionale di Contrasto all'Antibiotico-Resistenza (PrCAR), ha predisposto schede sintetiche gestione delle infezioni più frequenti (https://assr.regione.emiliaromagna.it/antibioticoresistenza-infezioni/antibiotici-e-resistenze/schede-gestioneinfezioni). I consumi di antibiotici in ospedale, pari a 72,5 DDD per 100 giornate di degenza nel 2023, hanno mostrato un significativo incremento rispetto al 2022 (+4%), avvicinandosi al picco osservato nel 2020. Nel 2023, si è osservata una percentuale di consumi di antibiotici a elevato impatto sulle resistenze pari a 47,4%, in lieve incremento dopo la riduzione registrata nel 2022.

Abstract

Surveillance of antimicrobial resistance and consumption of systemic antibiotics in Emilia-Romagna. Report 2023

This report presents the data updated to 2023 of the antibiotic resistance surveillance system (LAB) and the drug databases (AFT, FED and AFO) of the Emilia-Romagna Region. Indicators for monitoring antibiotic consumption, defined at a European level, are also provided (ECDC/EFSA/EMA, 2017): ratio between broad/narrow spectrum antibiotics (community setting); percentage of antibiotics with a high impact on resistance (hospital setting).

The number of bacterial cultures sent to laboratories in 2023 increased compared to 2022, after the sharp decline observed in 2020-2021. Similarly, after decreasing during the COVID-19 pandemic, the rate of bacteremia significantly increased with a peak in 2023 (478 per 100,000 inhabitants). For some microorganisms, in continuity with the trend observed in the previous two years, a particularly significant increase in bacteraemia rates was observed in 2023 compared to the pre-pandemic period (year 2019 taken as reference): *Enterococcus faecium* +52%; *Candida* spp. +56%; *Klebsiella pneumoniae* +54%. Comparing 2023 with 2022, a slight decline in bacteraemia rates for *Staphylococcus aureus* and *Enterococcus faecalis* was observed.

For *Escherichia coli*, an increase in the percentages of resistance to third generation cephalosporins (23.3%) was observed in 2023 compared to 2022 (21.8%) after the reduction in the previous three years. However, both the percentage of resistance and the rate of bacteremia caused by *E. coli* resistant to third-generation cephalosporins remained at levels significantly lower than those observed in 2019. Similar trends were also observed for the resistance of *E. coli* to amoxicillin and clavulanic acid, fluroquinolones and aminoglycosides.

The positive trend in the percentage of resistance of *K. pneumoniae* to carbapenems did not stop, having gone from 23.5% in 2016 to 7.0% in 2023, despite an increase in the number of episodes of bacteremia to 141 in 2023 (it had been 250, 256, 176, 141, 122, 122 and 109 in the previous seven years). The resistence of *K. pneumoniae* to carbapenems had a bimodal trend: after a significant reduction in 2012 as a result of the regional campaign for the control of carbapenemase-producing enterobacteria (Gagliotti et al., 2011, 2012, 2013, 2017; Ragni et al., 2011), a temporary increase was observed in the period 2013-2015, followed by a further decrease starting from 2016.

The type of carbapenemase most frequently detected in *K. peumoniae* was KPC (more than 70% of 2023 isolates for which information was available), followed by metallo beta-lactamases (in particular NDM) and OXA-48-like. However, for *K. pneumoniae*, a significant increase in the percentage of resistance to piperacillin-tazobactam has been observed, returning to 2016 levels. This increase is partly due to the production of non-ESBL and non-AmpC beta-lactamases, which are active on inhibitors but not on third/fourth generation cephalosporins, and has concerning clinical implications given the relevance of piperacillin-tazobactam in the management of infections in hospitals.

For carbapenem-resistant *Acinetobacter baumannii*, the number of infection episodes showed a progressive reduction: bacteremia (138 episodes in 2016, 110 in 2019, 78 in 2022 and 67 in 2023); pulmunary infections (360 episodes in 2016, 199 in 2019, 112 in 2022 and 93 in 2023). In recent years, on the other hand, an increase in carbapenem-resistant *Pseudomonas aeruginosa* isolates has been observed after the reduction previously observed: bacteraemia (91 episodes in 2015, 71 in 2019, 87 in 2022 and 112 in 2023); pulmunary infections (291 episodes in 2015, 115 in 2019, 182 in 2022 and 203 in 2023).

As regards *Staphylococcus aureus*, the percentage of MRSA (methicillin-resistant *S. aureus*, defined in the report as resistant to oxacillin) appeared to progressively reduce over the entire observation period 2016-2023, reaching a value of 21.9% in 2023 (isolated from blood). The rate of MRSA bacteremia showed a less distinct decreasing trend; this indicates that part of the reduction in the percentage of MRSA can be attributed to the increase in rates of MSSA bacteremia (methicillin-susceptible *S. aureus*). For *E. faecium* resistant to vancomycin, there was a clear increase in both the resistance percentage (35.2% in 2023; 10.3% in 2016 in blood isolates) and the bacteraemia rate. Finally, the resistance of *Streptococcus pneumoniae* to penicillin and erythromycin was stable (3.0% and 21.5% respectively in the 2023 blood isolates), albeit with a slight reduction compared to 2022.

The consumption of systemic antibiotics in the community, already decreasing before the COVID-19 pandemic, had an anomalous contraction in 2020 and 2021 (-28% and -31% respectively compared to 2019). This trend changed in 2022 (+29% compared to 2021) in conjunction with the easing of anti-COVID-19 measures, and in 2023 (+10% compared to 2022). The increase observed in 2023 has brought consumption back to pre-pandemic levels (13.3 DDD/1,000 inhabitants-day in 2023 versus 13.6 DDD/1,000 inhabitants-day in 2019). In 2023, the ratio between consumption of broad-spectrum

antibiotics and narrow-spectrum antibiotics remained high and greater than that of 2019, despite a slight reduction in the last two years. For this indicator, a notable variability between healthcare trusts was observed. To improve prescriptive appropriateness at the community level, a multi-professional working group was recently established in Emilia-Romagna which, as part of the regional plan to combat antibiotic resistance (PrCAR), prepared summary sheets for the management of the most frequent infections (https://assr.regione.emilia-romagna.it/antibioticoresistenza-infezioni/antibiotici-e-resistenze/schede-gestione-infezioni). Antibiotic consumption in hospital (72.5 DDD per 100 days of hospitalization in 2023) showed a significant increase compared to 2022 (+4%), approaching the peak observed in 2020. In 2023, the percentage of consumption of antibiotics with a high impact on resistance in hospital was 47.4%, showing a slight increase after the reduction observed in 2022.

Figure e tabelle

ELENCO FIGURE

Figura 1 - Tasso di batteriemia per 100.000 abitanti, escluse le forme da stafilococchi coagulasi-negativi, corinebatteri e altri possibili contaminanti cutanei (Regione Emilia-Romagna, 2016-2023)
Figura 2 - Tasso di batteriemia e percentuale di resistenza di quattro combinazioni microrganismo/antibiotico: <i>E. coli</i> /cefalosporine di terza generazione; <i>E. faecium</i> /vancomicina; <i>K. pneumoniae</i> /carbapenemi; <i>S. aureus</i> /oxacillina (Regione Emilia-Romagna, 2016-2023)
Figura 3a - Resistenze di Escherichia coli: emocolture e urinocolture
Figura 3b - Resistenze di <i>Escherichia coli</i> : urinocolture fluorochinoloni
Figura 3c - Resistenze di Escherichia coli: urinocolture cefalosporine III
Figura 4 - Resistenze di Klebsiella pneumoniae: emocolture e urinocolture
Figura 5 - Mono e coresistenze di Escherichia coli e <i>Klebsiella pneumoniae</i> a tre classi di antibiotici: fluorochinoloni, cefalosporine di III generazione e aminoglicosidi (emocolture)
Figura 6 - Resistenze di <i>Proteus mirabilis</i> : urinocolture
Figura 7 - Resistenze di <i>Pseudomonas aeruginosa</i> : emocolture31
Figura 8 - Resistenze di <i>Acinetobacter baumannii</i> : emocolture
Figura 9 - Resistenze nelle infezioni invasive da <i>Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecium</i>
Figura 10 - Tasso di consumo di antibiotici in Emilia-Romagna, espresso in DDD/1.000 abitanti-die (AFT, FED e AFO 2016-2023)
Figura 11 - Tasso di consumo territoriale di antibiotici in Emilia-Romagna, suddivisione per classe di antibiotici (AFT/FED 2016-2023)
Figura 12 - Tasso di consumo territoriale di antibiotici per classi di età e anno di calendario in Emilia-Romagna (AFT/FED 2016-2023)
Figura 13 - Tasso di consumo territoriale di antibiotici per Azienda USL in Emilia-Romagna (AFT/FED 2023)*
Figura 14 - Distribuzione del tasso di consumo territoriale di antibiotici e del rapporto antibiotici a spettro ampio /antibiotici a spettro ristretto per Azienda USL (AFT/FED 2023)
Figura 15 - Uso di antibiotici negli ospedali dell'Emilia-Romagna: consumo totale e suddiviso per classe di antibiotico (AFO 2016-2023)

Figura 16 - Uso di antibiotici negli ospedali dell'Emilia-Romagna: consumo per Azienda sanitaria espresso in DDD per 100 giornate di degenza (AFO 2023)42
Figura 17 - Distribuzione del tasso di consumo ospedaliero di antibiotici e della percentuale di antibiotici a elevato impatto sulle resistenze per azienda sanitaria (AFO 2023)
Figura 18 - Uso di antibiotici negli ospedali dell'Emilia-Romagna: consumo totale per mese (AFO 2020-2023)
Figura Ap.1 - <i>Escherichia coli</i> da emocolture e liquorcolture: fenotipi di resistenza ad aminoglicosidi, cefalosporine di III generazione, fluorochinoloni e aminopenicilline (Regione Emilia-Romagna 2023)
Figura Ap.2 - <i>Escherichia coli</i> da urinocolture: fenotipi di resistenza ad aminoglicosidi, cefalosporine di III generazione, fluorochinoloni e aminopenicilline (Regione Emilia-Romagna 2023)
Figura Ap.3 - <i>Klebsiella pneumoniae</i> da emocolture: fenotipi di resistenza ad aminoglicosidi, cefalosporine di III generazione e fluorochinoloni (Regione Emilia-Romagna 2023)
Figura Ap.4 - <i>Klebsiella pneumoniae</i> da urinocolture: fenotipi di resistenza ad aminoglicosidi, cefalosporine di III generazione e fluorochinoloni (Regione Emilia-Romagna 2023)
Figura Ap.5 - Prevalenza di resistenza dei più comuni Enterobatteri isolati dalle urinocolture in donne di età ≤65 anni, pazienti esterni * (Regione Emilia-Romagna, 2023)
ELENCO TABELLE
Tabella 1 - Colture batteriche eseguite nel 2023 per materiale e tipologia di struttura richiedente 21
Tabella 2 - Numero di episodi di batteriemia e tasso per 100.000 abitanti, escluse le forme da stafilococchi coagulasi-negativi, corinebatteri e da altri possibili contaminanti cutanei (Regione Emilia-Romagna, 2016-2023)
Tabella 3 - Enterobatteri non sensibili ai carbapenemi* isolati da sangue e basse vie respiratorie: numero di pazienti per anno (Regione Emilia-Romagna, 2016-2023) 30
Tabella 4 - Tipologia di carbapenemasi negli isolati di Klebsiella pneumoniae da sangue, materiali polmonari, urine e pus/essudati^ (Regione Emilia-Romagna, 2023)
Tabella 5 - <i>Pseudomonas aeruginosa</i> e <i>Acinetobacter baumannii</i> non sensibili ai carbapenemi isolati da sangue e basse vie respiratorie: numero di pazienti per anno (Regione Emilia-Romagna, 2016-2023)

Sorveglianza dell'antibioticoresistenza e uso di antibiotici sistemici in Emilia-Romagna Rapporto 2023

Tabella 6 - DDD di antibiotici rilevate dagli archivi sui farmaci della Regione Emilia Romagna e popolazione di riferimento nel periodo 2016-2023*
Tabella 7 - Uso di antibiotici negli ospedali dell'Emilia-Romagna: focus su alcun molecole rilevanti per il trattamento di infezioni sostenute da microrganismi mult resistenti (AFO 2016-2023)
Tabella Ap1 - Colture batteriche eseguite nel periodo 2022 per materiale e tipologi di struttura richiedente
Tabella Ap2 - Colture batteriche eseguite nel periodo 2021 per materiale e tipologi di struttura richiedente
Tabella Ap3 - Colture batteriche eseguite nel periodo 2020 per materiale e tipologi di struttura richiedente

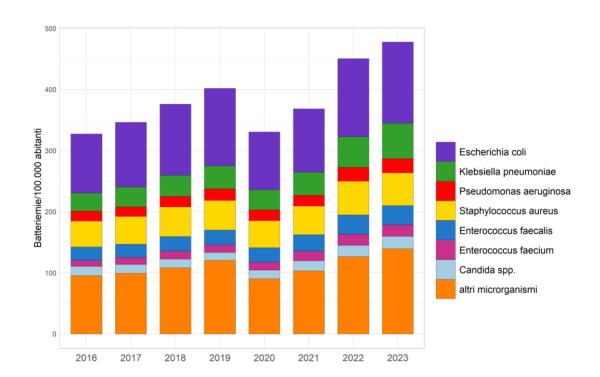
Parte I - Sorveglianza dell'antibioticoresistenza

Rappresentatività del sistema di sorveglianza

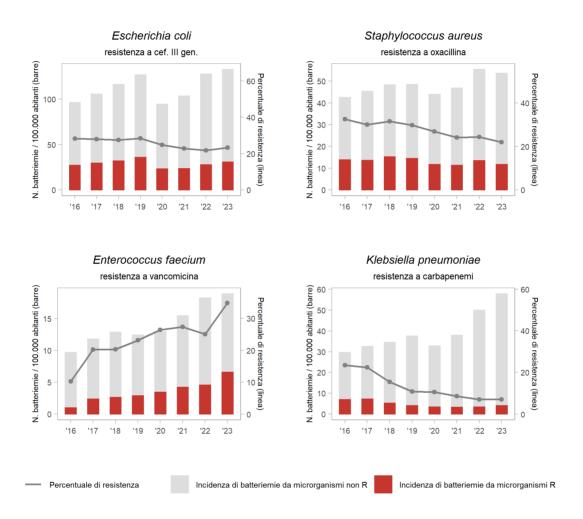
Il Sistema per la sorveglianza delle resistenze agli antibiotici, nato dall'esigenza di monitorare e contrastare la diffusione delle resistenze agli antibiotici, è stato realizzato su iniziativa dell'Agenzia sanitaria e sociale regionale dell'Emilia-Romagna con il supporto dell'Assessorato Politiche per la salute e delle Aziende sanitarie della Regione. Nel periodo della sua attività iniziata nel 2003, si è osservata una progressiva crescita della partecipazione dei laboratori fino a ottenere l'adesione di tutti i centri ospedalieri pubblici della regione e dei laboratori collocati all'interno di strutture ospedaliere private. Nel 2023, i laboratori privati che hanno fornito i dati al sistema sono stati quelli di Hesperia Hospital (Modena), Ospedale Privato Prof. E. Montanari (Rimini), Ospedale Privato Villa Verde (Reggio Emilia) e Villa Maria Cecilia Hospital (Cotignola - RA).

Quantificazione dell'attività laboratoristica di batteriologia

Tabella 1 - Colture batteriche eseguite nel 2023 per materiale e tipologia di struttura richiedente


	Ospedale		Pronto soccorso		Ambulatorio		Altra struttura		Totale	
	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive
Urine	100.555	31,2	26.144	40,7	281.287	23,2	18.187	29,8	426.173	26,5
Sangue	100.870	19,8	24.167	31,4	15.923	18,0	920	24,7	141.880	21,6
Liquor	2.198	5,1	434	8,8	382	7,1	7	0,0	3.021	5,8
Pus Essudati	55.598	20,9	4.963	9,0	38.702	14,1	2.287	35,2	101.550	18,1
Feci	41.065	6,7	923	15,0	28.216	7,7	2.707	6,3	72.911	7,2
Basse vie respiratorie	23.992	32,5	116	30,2	9.441	33,0	2.116	15,1	35.665	31,6
Alte vie respiratorie	28.223	11,3	312	31,7	15.070	24,0	682	16,0	44.287	15,9
Tamponi genitali	5.769	20,9	72	31,9	41.741	23,2	749	6,0	48.331	22,7
Altro materiale	11.797	27,2	374	26,2	4.781	25,0	244	16,0	17.196	26,4
Totale	370.067	22,0	57.505	33,3	435.543	21,5	27.899	25,6	891.014	22,6

NB Per i materiali (in particolare l'emocoltura) per i quali vengono fatti più prelievi nello stesso giorno, il conteggio del "numero esami" è stato eseguito considerando per ogni paziente un solo esame per materiale e giorno, anche nel caso fossero stati eseguiti due o più prelievi. In questo modo, è possibile avere una figura comparativa del ricorso alle colture per i diversi materiali considerati.


.

Tasso di incidenza di batteriemia in ambito regionale

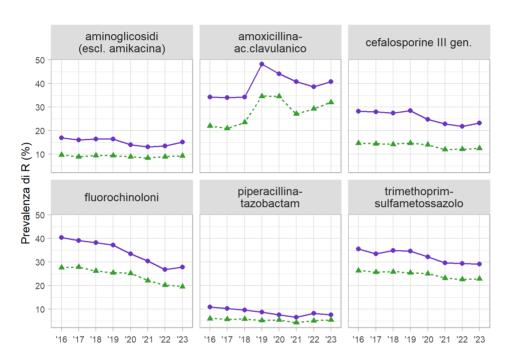
Figura 1 - Tasso di batteriemia per 100.000 abitanti, escluse le forme da stafilococchi coagulasinegativi, corinebatteri e altri possibili contaminanti cutanei (Regione Emilia-Romagna, 2016-2023)

Figura 2 - Tasso di batteriemia e percentuale di resistenza di quattro combinazioni microrganismo/antibiotico: *E. coli*/cefalosporine di terza generazione; *E. faecium*/vancomicina; *K. pneumoniae*/carbapenemi; *S. aureus*/oxacillina (Regione Emilia-Romagna, 2016-2023)

Tabella 2 - Numero di episodi di batteriemia e tasso per 100.000 abitanti, escluse le forme da stafilococchi coagulasi-negativi, corinebatteri e da altri possibili contaminanti cutanei (Regione Emilia-Romagna, 2016-2023)

	Numero episodi di batteriemia								
	2016	2017	2018	2019	2020	2021	2022	2023	
Escherichia coli	4.168	4.476	4.907	5.255	3.986	4.356	4.896	5.188	
Staphylococcus aureus	1.836	1.921	2.038	2.010	1.851	1.968	2.122	2.092	
Klebsiella pneumoniae	1.283	1.380	1.455	1.553	1.381	1.599	1.914	2.260	
Enterococcus faecalis	947	911	1.012	1.003	1.001	1.137	1.213	1.222	
Enterococcus faecium	419	500	542	515	547	650	699	738	
Pseudomonas aeruginosa	702	661	721	787	756	743	865	907	
Candida spp.	646	603	599	543	595	702	699	796	
altri microrganismi	4.125	4.207	4.562	4.974	3.809	4.335	4.852	5.441	
totale	14.126	14.659	15.836	16.640	13.926	15.490	17.260	18.644	

NB Il calcolo dei tassi è stato effettuato utilizzando come denominatore la popolazione ISTAT (in linea con quanto già fatto per i consumi di antibiotici in ambito territoriale). Questo aggiornamento del metodo determina variazioni marginali dei tassi che non interferiscono con l'interpretazione dei dati e con la valutazione dei trend.


	Tasso per 100.000 abitanti								
	2016	2017	2018	2019	2020	2021	2022	2023	
Escherichia coli	96,6	105,7	116,5	126,9	94,6	103,6	127,8	132,9	
Staphylococcus aureus	42,6	45,4	48,4	48,6	43,9	46,8	55,4	53,6	
Klebsiella pneumoniae	29,7	32,6	34,5	37,5	32,8	38,0	50,0	57,9	
Enterococcus faecalis	21,9	21,5	24,0	24,2	23,8	27,0	31,7	31,3	
Enterococcus faecium	9,7	11,8	12,9	12,4	13,0	15,5	18,2	18,9	
Pseudomonas aeruginosa	16,3	15,6	17,1	19,0	17,9	17,7	22,6	23,2	
Candida spp.	15,0	14,2	14,2	13,1	14,1	16,7	18,2	20,4	
altri microrganismi	95,6	99,4	108,3	120,2	90,4	103,1	126,6	139,4	
totale	327,4	346,3	375,9	402,0	330,4	368,5	450,4	477,7	

Gram negativi: enterobatteri

Escherichia coli

Figura 3a - Resistenze di Escherichia coli: emocolture e urinocolture

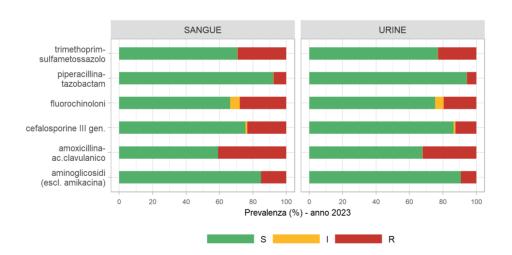
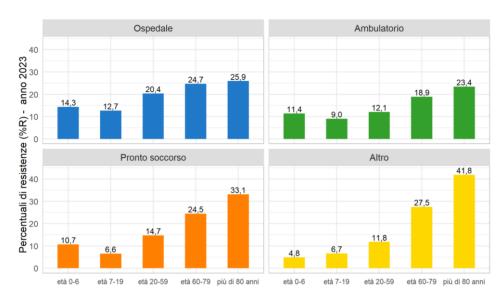
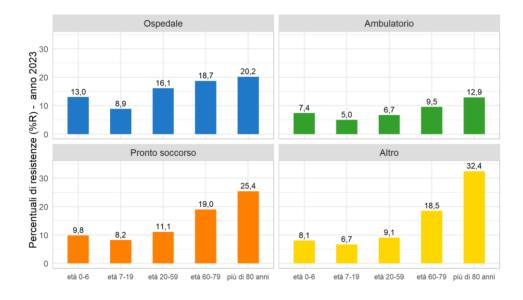
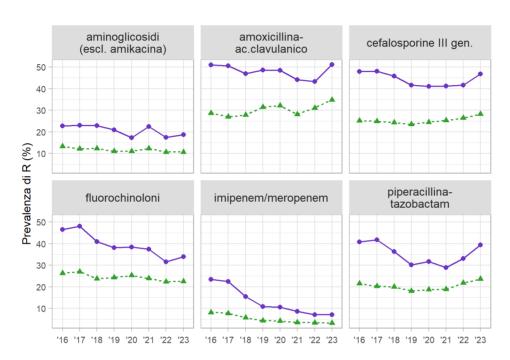
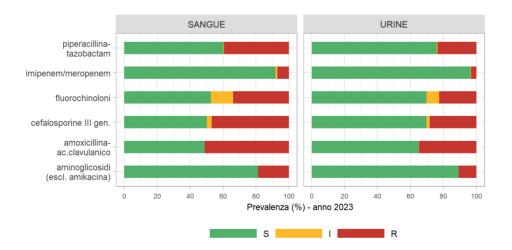


Figura 3b - Resistenze di Escherichia coli: urinocolture fluorochinoloni

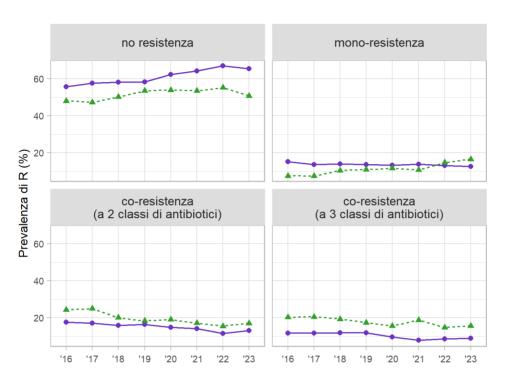



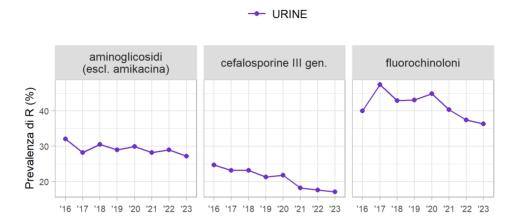

Figura 3c - Resistenze di Escherichia coli: urinocolture cefalosporine III



Klebsiella pneumoniae

Figura 4 - Resistenze di Klebsiella pneumoniae: emocolture e urinocolture




Figura 5 - Mono e coresistenze di Escherichia coli e *Klebsiella pneumoniae* a tre classi di antibiotici: fluorochinoloni, cefalosporine di III generazione e aminoglicosidi (emocolture)

Proteus mirabilis

Figura 6 - Resistenze di Proteus mirabilis: urinocolture

Enterobatteri resistenti ai carbapenemi

Tabella 3 - Enterobatteri non sensibili ai carbapenemi* isolati da sangue e basse vie respiratorie: numero di pazienti per anno (Regione Emilia-Romagna, 2016-2023)

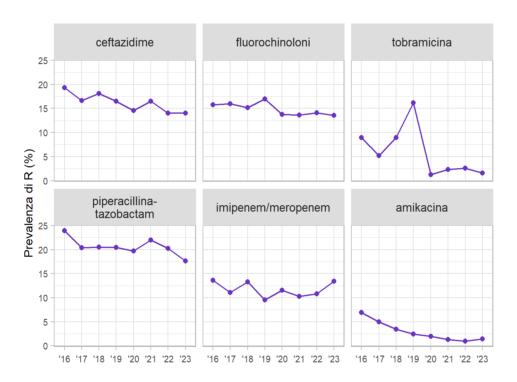
	2016	2017	2018	2019	2020	2021	2022	2023	
Sangue									
Escherichia coli	6	10	9	9	0	2	6	9	
Klebsiella aerogenes	0	3	2	1	3	1	1	2	
Klebsiella oxytoca	2	2	0	1	0	0	0	0	
Klebsiella pneumoniae	250	256	176	141	122	122	109	141	
Serratia marcescens	0	2	1	0	0	1	1	1	
	2016	2017	2018	2019	2020	2021	2022	2023	
BAL/Broncoaspira	ito/Trac	heoaspi	rato						
Escherichia coli	3	9	1	5	2	2	2	3	
Klebsiella aerogenes	17	7	5	4	1	3	6	2	
Klebsiella oxytoca	0	0	0	0	1	1	0	1	
Klebsiella pneumoniae	181	144	86	86	65	80	57	54	
Serratia marcescens	5	3	1	2	2	3	0	0	

^{*} Sono stati considerati i test di sensibilità relativi a imipenem e meropenem.

Tabella 4 - Tipologia di carbapenemasi negli isolati di *Klebsiella pneumoniae* da sangue, materiali polmonari, urine e pus/essudati^ (Regione Emilia-Romagna, 2023)

Carbapenemasi	n.	%
KPC	274	71.0
OXA-48-like	24	6.2
NDM	46	11.9
VIM	7	1.8
multiplo*	5	1.3
MBL non specificata	25	6.5
carbapenemasi non specificata	5	1.3
Totale	386	100

[^]Il dato è disponibile sono in una parte degli isolati


^{*}KPC+OXA-48-like=1; KPC+VIM=1; KPC+MBL=1; NDM+OXA-48-like=2

Altri microrganismi Gram negativi

Pseudomonas aeruginosa e Acinetobacter baumannii

Figura 7 - Resistenze di Pseudomonas aeruginosa: emocolture

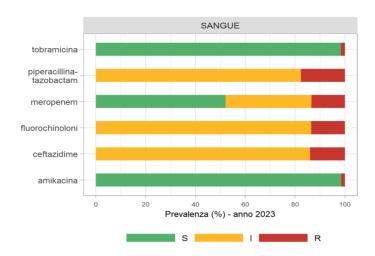
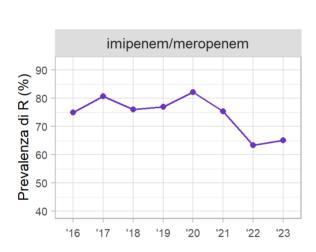
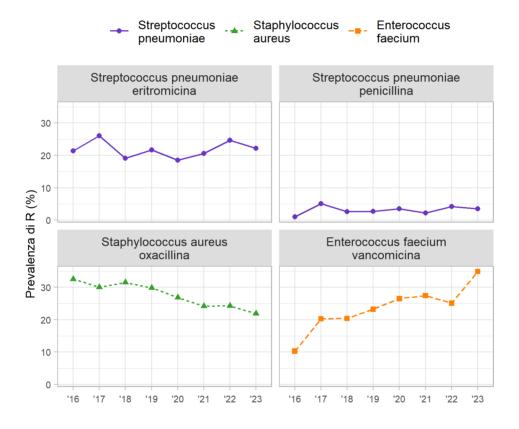



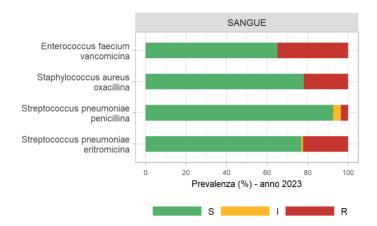
Figura 8 - Resistenze di Acinetobacter baumannii: emocolture

SANGUE

Tabella 5 - *Pseudomonas aeruginosa* e *Acinetobacter baumannii* non sensibili ai carbapenemi isolati da sangue e basse vie respiratorie: numero di pazienti per anno (Regione Emilia-Romagna, 2016-2023)

	2016	2017	2018	2019	2020	2021	2022	2023		
Sangue										
Pseudomonas aeruginosa	91	69	88	71	83	72	87	112		
Acinetobacter baumannii	138	130	133	110	97	107	78	67		


Sorveglianza dell'antibioticoresistenza e uso di antibiotici sistemici in Emilia-Romagna Rapporto 2023


	2016	2017	2018	2019	2020	2021	2022	2023			
Sangue											
	2016	2017	2018	2019	2020	2021	2022	2023			
BAL/Broncoaspirato/Tracheoaspirato											
Pseudomonas aeruginosa	291	217	154	115	134	150	182	203			
Acinetobacter baumannii	360	239	171	199	211	166	112	93			

Microrganismi Gram positivi

Staphylococcus aureus, Streptococcus pneumoniae ed Enterococcus faecium

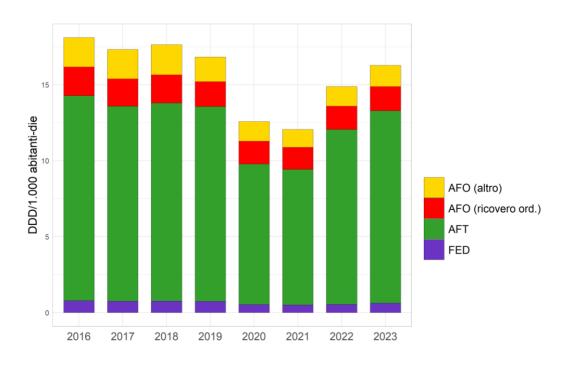
Figura 9 - Resistenze nelle infezioni invasive da *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Enterococcus faecium*

Parte II - Uso di antibiotici sistemici in Emilia-Romagna

Uso di antibiotici sistemici in Emilia-Romagna

Tabella 6 - DDD di antibiotici rilevate dagli archivi sui farmaci della Regione Emilia-Romagna e popolazione di riferimento nel periodo 2016-2023*

	AFT	FED	AFO		AFO Totale DDD	
			ricovero ord.	altro		
2016	21.919.154	1.274.782	3.062.051	3.146.509	29.402.496	4.448.146
2017	20.840.355	1.221.426	2.922.634	3.154.506	28.138.920	4.448.841
2018	21.192.983	1.240.070	3.011.408	3.215.586	28.660.047	4.452.629
2019	20.875.279	1.208.086	2.662.358	2.641.561	27.387.284	4.459.477
2020	15.077.693	863.528	2.440.838	2.100.598	20.482.657	4.464.119
2021	14.449.520	833.040	2.354.580	1.894.409	19.531.549	4.438.937
2022	18.613.832	885.230	2.482.511	2.081.948	24.063.520	4.431.816
2023	20.522.157	1.003.839	2.581.558	2.245.632	26.353.185	4.437.578


^{*}AFT = Assistenza farmaceutica territoriale

FED = Farmaci ad erogazione diretta

AFO = Assistenza farmaceutica ospedaliera

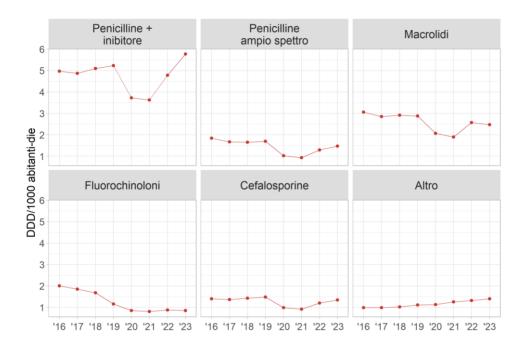

ricovero ord. = antibiotici erogati ai degenti in regime di ricovero ordinario.

Figura 10 - Tasso di consumo di antibiotici in Emilia-Romagna, espresso in DDD/1.000 abitantidie (AFT, FED e AFO 2016-2023)

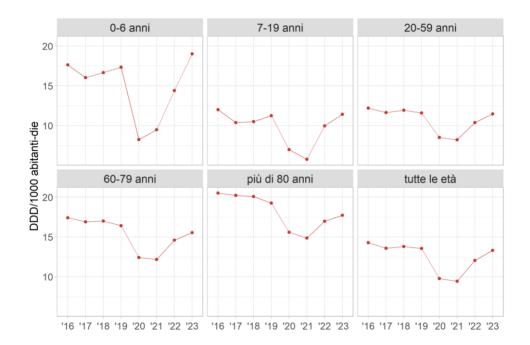

Consumi territoriali (AFT/FED)

Figura 11 - Tasso di consumo territoriale di antibiotici in Emilia-Romagna, suddivisione per classe di antibiotici (AFT/FED 2016-2023)

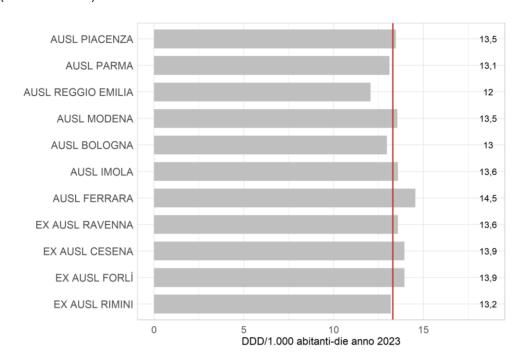

Molecole		DDD/1.000 abitanti-die								
	2016	2017	2018	2019	2020	2021	2022	2023		
Penicilline + inibitore	5,0	4,9	5,1	5,2	3,7	3,6	4,8	5,8		
Penicilline ampio spettro	1,8	1,7	1,7	1,7	1,0	0,9	1,3	1,5		
Macrolidi	3,1	2,8	2,9	2,9	2,1	1,9	2,6	2,5		
Fluorochinoloni	2,0	1,8	1,7	1,2	0,9	0,8	0,9	0,9		
Cefalosporine	1,4	1,4	1,4	1,5	1,0	0,9	1,2	1,3		
Altro	1,0	1,0	1,0	1,1	1,1	1,3	1,3	1,4		
Totale	14,3	13,6	13,8	13,6	9,8	9,4	12,1	13,3		

Figura 12 - Tasso di consumo territoriale di antibiotici per classi di età e anno di calendario in Emilia-Romagna (AFT/FED 2016-2023)

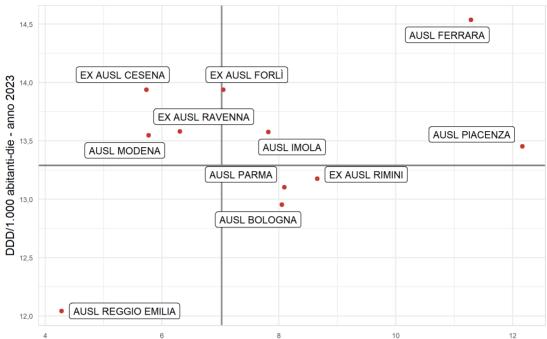
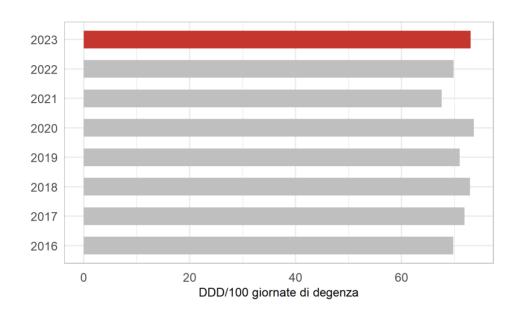

Classi di età	DDD/1.000 abitanti-die								
	2016	2017	2018	2019	2020	2021	2022	2023	
0-6 anni	17,6	16,0	16,7	17,3	8,3	9,5	14,4	19,0	
7-19 anni	12,0	10,4	10,5	11,2	7,0	5,8	10,0	11,4	
20-59 anni	12,2	11,6	11,9	11,6	8,5	8,2	10,4	11,4	
60-79 anni	17,4	16,9	17,0	16,4	12,4	12,2	14,6	15,5	
più di 80 anni	20,5	20,2	20,1	19,3	15,6	14,9	17,0	17,8	
tutte le età	14,3	13,6	13,8	13,6	9,8	9,4	12,1	13,3	

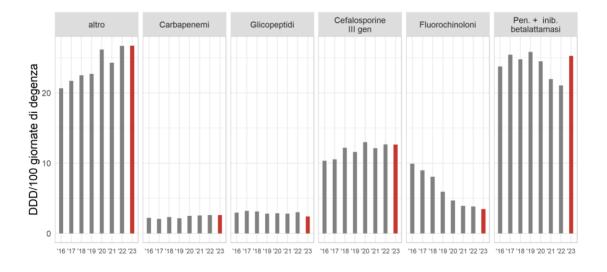
Figura 13 - Tasso di consumo territoriale di antibiotici per Azienda USL in Emilia-Romagna (AFT/FED 2023)*

^{*} La linea verticale indica il tasso medio regionale.

Figura 14 - Distribuzione del tasso di consumo territoriale di antibiotici e del rapporto antibiotici a spettro ampio /antibiotici a spettro ristretto per Azienda USL (AFT/FED 2023)

Rapporto tra consumi (DDD) di antibiotici a spettro ampio e antibiotici a spettro ristretto


Legenda


- nel riquadro in basso a sinistra sono incluse le Aziende sanitarie con consumi di antibiotici e percentuali di uso di molecole a elevato impatto sulle resistenze inferiori alla media regionale 2022
- nel riquadro in alto a destra sono incluse le Aziende sanitarie con consumi di antibiotici e percentuali di uso di molecole a elevato impatto sulle resistenze superiori alla media regionale 2022;
- negli altri due riquadri sono incluse le Aziende sanitarie che hanno un indicatore migliore e l'altro peggiore rispetto alla media regionale.

	Rappo	Rapporto tra consumi (DDD) di antibiotici a spettro ampio e antibiotici a spettro ristretto									
	2016	2017	2018	2019	2020	2021	2022	2023	Δ% 2022- 2021	Δ% 2023- 2022	
AUSL PIACENZA	10,3	10,6	10,6	9,7	14,3	13,2	12,3	12,2	-0,9	-0,1	
AUSL PARMA	7,0	7,3	7,5	7,3	11,1	9,9	9,5	8,1	-0,4	-1,4	
AUSL REGGIO EMILIA	3,8	4,2	4,1	4,0	5,4	5,8	5,2	4,3	-0,5	-1,0	
AUSL MODENA	5,8	5,9	5,8	5,1	5,7	6,4	5,9	5,8	-0,5	-0,1	
AUSL BOLOGNA	5,9	6,2	6,6	6,3	6,7	7,2	6,9	8,0	-0,4	1,2	
AUSL IMOLA	6,4	6,5	7,1	7,5	8,5	9,0	8,1	7,8	-0,9	-0,3	
AUSL FERRARA	8,5	9,7	9,9	9,8	12,6	13,4	13,3	11,3	-0,1	-2,0	
EX AUSL RAVENNA	5,8	6,0	6,4	5,9	6,5	6,7	6,0	6,3	-0,7	0,3	
EX AUSL FORLÌ	5,8	6,3	7,1	7,2	6,9	6,7	6,5	7,0	-0,1	0,5	
EX AUSL CESENA	4,6	4,9	5,1	5,1	5,4	6,1	5,9	5,7	-0,2	-0,2	
EX AUSL RIMINI	10,4	10,8	11,3	10,2	10,3	9,2	9,0	8,7	-0,2	-0,3	
RER	6,1	6,4	6,6	6,3	7,4	7,7	7,2	7,0	-0,5	-0,2	

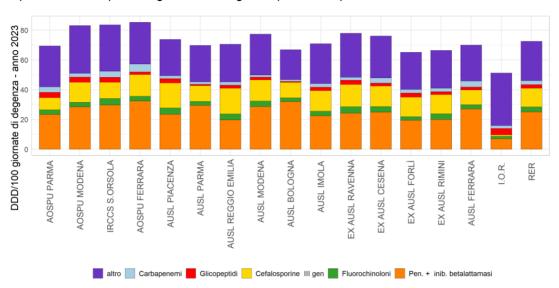
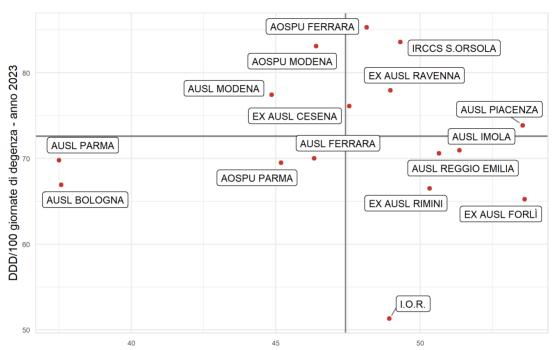

Consumi ospedalieri (AFO)

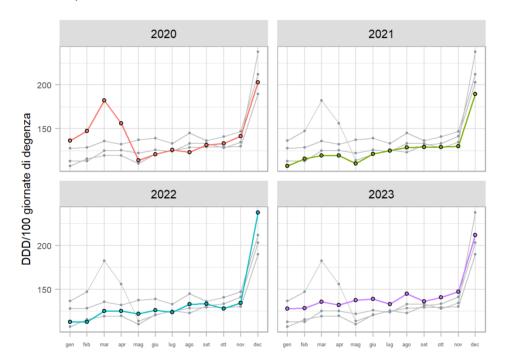
Figura 15 - Uso di antibiotici negli ospedali dell'Emilia-Romagna: consumo totale e suddiviso per classe di antibiotico (AFO 2016-2023)


Figura 16 - Uso di antibiotici negli ospedali dell'Emilia-Romagna: consumo per Azienda sanitaria espresso in DDD per 100 giornate di degenza (AFO 2023)

	Penic. + inib. betalattamasi	Fluoro- chinoloni	Cefalosporin e III generaz.	Glico- peptidi	Carba- penemi	altro
AUSL PIACENZA	23,6	4,2	16,8	2,8	2,0	24,4
AUSL PARMA	29,5	2,7	10,6	0,9	1,6	24,5
AUSL REGGIO EMILIA	19,8	4,0	17,3	2,1	2,1	25,4
AUSL MODENA	28,7	3,8	14,2	1,9	1,4	27,5
AUSL BOLOGNA	32,0	2,6	10,3	0,8	1,1	20,1
AUSL IMOLA	22,4	3,2	13,8	2,3	2,4	26,9
AUSL FERRARA	27,1	2,9	9,9	2,0	4,0	24,2
EX AUSL RAVENNA	24,3	4,3	15,0	2,8	2,0	29,5
EX AUSL FORLÌ	19,5	2,3	13,2	2,7	2,5	25,0
EX AUSL CESENA	25,0	3,8	13,8	1,9	3,4	28,2
EX AUSL RIMINI	19,9	4,0	12,8	2,0	2,3	25,5
AOSPU PARMA	23,4	3,1	8,2	3,5	3,8	27,5
AOSPU MODENA	28,4	3,1	13,4	3,5	2,5	32,0
IRCCS S.ORSOLA	29,7	4,4	10,9	3,4	4,0	31,2
AOSPU FERRARA	32,4	3,3	14,6	1,7	5,3	28,1
I.O.R.	7,0	1,8	0,9	4,3	2,0	35,3
RER	25,1	3,4	12,5	2,4	2,6	26,5

NB I consumi relativi all'Azienda USL di Modena e all'Azienda USL di Imola non includono rispettivamente i dati dell'Ospedale di Sassuolo e del Montecatone Rehabilitation Institute.

Figura 17 - Distribuzione del tasso di consumo ospedaliero di antibiotici e della percentuale di antibiotici a elevato impatto sulle resistenze per azienda sanitaria (AFO 2023)



Percentuale di consumi (DDD) di antibiotici a elevato impatto sulle resistenze

		% di co	nsumi (D	DD) di a	ntibiotici	a elevat	o impat	to sulle	resistenze	
	2016	2017	2018	2019	2020	2021	2022	2023	Δ% 2022- 2021	Δ% 2023- 2022
AUSL PIACENZA	53,6	53,7	55,7	55,3	54,4	58,2	53,5	53,6	-4,7	0,0
AUSL PARMA	54,7	51,0	47,3	47,6	46,1	46,5	36,7	37,5	-9,8	0,8
AUSL REGGIO EMILIA	41,7	41,9	42,1	43,9	47,3	49,6	47,1	50,7	-2,4	3,5
AUSL MODENA	50,7	45,7	42,5	41,5	43,7	42,1	40,9	44,9	-1,1	3,9
AUSL BOLOGNA	35,5	36,8	34,0	32,0	39,8	39,7	35,3	37,6	-4,4	2,3
AUSL IMOLA	53,7	54,6	53,3	51,1	46,9	53,2	50,4	51,4	-2,8	0,9
AUSL FERRARA	44,7	42,2	42,9	42,6	41,7	46,4	45,5	46,3	-0,9	0,8
EX AUSL RAVENNA	48,5	46,4	47,8	48,5	50,9	49,9	47,5	49,0	-2,4	1,4
EX AUSL FORLÌ	52,4	49,7	45,3	47,3	49,5	52,7	49,8	53,6	-2,9	3,8
EX AUSL CESENA	50,1	50,5	46,9	46,6	45,7	48,3	46,7	47,5	-1,6	0,8
EX AUSL RIMINI	45,9	48,2	51,6	52,6	55,6	54,0	52,5	50,3	-1,5	-2,2
AOSPU PARMA	52,6	50,3	47,3	46,4	52,2	47,9	44,7	45,2	-3,1	0,4
AOSPU MODENA	45,6	50,4	49,7	48,4	48,9	48,7	45,3	46,4	-3,5	1,1
IRCCS S.ORSOLA	52,6	50,2	47,8	45,7	50,4	50,7	45,8	49,3	-4,9	3,5
AOSPU FERRARA	46,2	45,1	41,2	43,0	47,7	49,7	45,3	48,1	-4,4	2,8
I.O.R.	50,7	53,1	54,0	51,9	53,2	60,5	56,1	48,9	-4,4	-7,2

		% di consumi (DDD) di antibiotici a elevato impatto sulle resistenze								
	2016	2017	2018	2019	2020	2021	2022	2023	Δ% 2022- 2021	Δ% 2023- 2022
RER	47,6	47,0	45,7	45,4	48,3	48,9	45,7	47,4	-3,2	1,7

Figura 18 - Uso di antibiotici negli ospedali dell'Emilia-Romagna: consumo totale per mese (AFO 2020-2023)

Tabella 7 - Uso di antibiotici negli ospedali dell'Emilia-Romagna: focus su alcune molecole rilevanti per il trattamento di infezioni sostenute da microrganismi multi-resistenti (AFO 2016-2023)

Molecole			DDD/:	100 giorn	ate di de	genza		
	2016	2017	2018	2019	2020	2021	2022	2023
ceftarolina fosamil	<0,01	<0,01	<0,01	<0,01	0,01	0,03	0,03	0,02
ceftazidime-avibactam			0,06	0,09	0,14	0,20	0,18	0,17
ceftobiprolo medocaril	<0,01	<0,01	<0,01	0,02	0,04	0,03	0,03	0,03
ceftolozano-tazobactam	<0,01	0,03	0,03	0,07	0,16	<0,01	0,18	0,22
colistina	0,65	0,66	0,60	0,57	0,69	0,59	0,53	0,50
dalbavancina	<0,01	<0,01	<0,01	<0,01	<0,01	0,01	0,01	0,01
daptomicina	0,80	0,91	1,17	1,36	2,00	2,49	2,95	3,34
fidaxomicina	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,03	0,04
fosfomicina	1,35	1,71	1,87	2,01	2,27	2,27	2,42	2,46
linezolid	0,70	0,94	1,20	1,23	1,58	1,55	1,63	1,58

Sorveglianza dell'antibioticoresistenza e uso di antibiotici sistemici in Emilia-Romagna Rapporto 2023

Molecole		DDD/100 giornate di degenza								
	2016	2017	2018	2019	2020	2021	2022	2023		
piperacillina-tazobactam	6,89	7,88	5,95	8,06	9,96	8,49	5,91	9,61		
tedizolid			<0,01	<0,01	<0,01	<0,01	<0,01	<0,01		
tigeciclina	0,27	0,34	0,35	0,35	0,36	0,40	0,42	0,31		
vancomicina	0,01	0,01	0,01	0,02	0,02	0,02	0,02	0,03		

Bibliografia

EUCAST - European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. EUCAST, Version 13.0, 2023.

Gagliotti C, Cappelli V, Carretto E, Pan A, Sarti M, Suzzi R, Tura GA, Moro ML. Indicazioni pratiche e protocolli operativi per la diagnosi, la sorveglianza e il controllo degli enterobatteri produttori di carbapenemasi nelle strutture sanitarie e sociosanitarie. Bologna, Agenzia sanitaria e sociale regionale dell'Emilia-Romagna, 2011. http://assr.regione.emilia-romagna.it/it/servizi/pubblicazioni/rapportidocumenti/indicazioni-pratiche-cpe-2011 (ultimo accesso settembre 2023)

Gagliotti C, Alfano G, Antonioli P, Artioli S, Cappelli V, Carli S, Castellani G, Cavazzuti L, D'Erasmo D, Farina M, Filippini F, Lavezzi S, Manzalini MC, Ragni P, Rompianesi MC, Rovigatti M, Testoni S, Zanzi M, Moro ML. Indicazioni per il controllo della trasmissione degli enterobatteri produttori di carbapenemasi nelle Unità di Riabilitazione. Bologna, Agenzia sanitaria e sociale regionale dell'Emilia-Romagna, 2012. http://assr.regione.emilia-romagna.it/it/servizi/pubblicazioni/rapportidocumenti/trasmissione-carbapenemasi-2012 (ultimo accesso settembre 2023)

Gagliotti C, Cappelli V, Carretto E, Pan A, Sarti M, Suzzi R, Tura GA, Moro ML. Indicazioni pratiche e protocolli operativi per la diagnosi, la sorveglianza e il controllo degli enterobatteri produttori di carbapenemasi nelle strutture sanitarie e sociosanitarie. Bologna, Agenzia sanitaria e sociale regionale dell'Emilia-Romagna, 2013.

Gagliotti C, Carretto E, Sarti M, Tura GA, Moro ML. Indicazioni pratiche e protocolli operativi per la diagnosi, la sorveglianza e il controllo degli enterobatteri produttori di carbapenemasi nelle strutture sanitarie e socio-sanitarie. Bologna, Agenzia sanitaria e sociale regionale dell'Emilia-Romagna, 2017. http://assr.regione.emilia-romagna.it/it/servizi/pubblicazioni/rapporti-documenti/indicazioni-pratiche-diagnosi-cpe-2017 (ultimo accesso settembre 2023)

Ragni P, Gagliotti C, Brambilla A, Moro ML. Indicazioni pratiche per la sorveglianza e il controllo degli enterobatteri produttori di carbapenemasi in Sanità Pubblica e nel territorio: strutture socio-sanitarie, residenze private. Bologna, Agenzia sanitaria e sociale regionale dell'Emilia-Romagna, 2011. http://assr.regione.emilia-romagna.it/it/servizi/pubblicazioni/rapporti-documenti/indicazioni-pratiche-sorveglianza-cpe-2011-residenze-private (ultimo accesso settembre 2023)

WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC classification and DDD assignment 2023. Oslo, 2022

Appendici

Appendice 1. Metodologia

ANTIBIOTICORESISTENZE

Trasferimento di dati, codifiche e controlli

I dati di batteriologia presenti negli archivi informatici dei laboratori ospedalieri vengono trasmessi ogni 4 mesi al sistema regionale in formato elettronico utilizzando un tracciato record e codifiche standard. Per maggiori informazioni si possono consultare le pagine web del Sistema informativo delle politiche per la salute e delle politiche sociali della Regione Emilia-Romagna dedicate a tale flusso informativo¹. Dal 2007 il portale web regionale permette di effettuare simulazioni di invio e prevede, per alcune informazioni, controlli scartanti e segnalazioni di errori/incongruenze, ciò per migliorare la qualità dei dati ricevuti. Il sistema produce per ogni record un identificativo anonimo individuale del paziente, che consente la connessione con gli altri flussi informativi regionali (es. SDO, AFT). Sono state inoltre introdotte codifiche standard per i microrganismi. Il *linkage*, o connessione, tra i diversi flussi informativi correnti regionali consente l'analisi in modo anonimo delle informazioni disponibili per ciascun paziente, permettendo lo studio di possibili correlazioni fra l'isolamento di germi antibioticoresistenti, le terapie antibiotiche e altri dati relativi alla storia clinica.

Analisi effettuate

Andamento dell'antibioticoresistenza nel periodo 2016-2023

Analisi su scala regionale

Indicatori

Prevalenza di antibiotico resistenza

Tasso di batteriemia per 100.000 abitanti

Materiali biologici e microrganismi selezionati per monitorare la prevalenza di antibioticoresistenza:

¹ http://www.saluter.it/siseps/sanita/lab/analisi-statistica - Area Sanità - "Laboratori - LAB" (ultimo accesso luglio 2024)

- Emocolture (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecium e Streptococcus pneumoniae)
- Urinocolture (Escherichia coli, Klebsiella pneumoniae e Proteus mirabilis)

Analisi dettagliate relative al 2023

Analisi per materiale biologico Indicatori

- Prevalenza di antibioticoresistenza dei singoli microrganismi per materiale biologico
- Materiali biologici inclusi
- Emocolture +/- liquorcolture
- Urinocolture
- Colture materiali polmonari (espettorato; aspirato tracheo-bronchiale; BAL/brushing/aspirato protetto)
- Colture pus/essudati
- Colture feci
- Colture tamponi genitali (uretra, vagina, cervice uterina, sperma, secreto prostatico)

La prevalenza di antibioticoresistenza è stata calcolata solo per alcuni microrganismi, selezionati in base alla loro frequenza e/o alla loro rilevanza epidemiologica.

Categorizzazione delle variabili

• Tipologia di pazienti: esterni, ricoverati, lungodegenti extra-ospedalieri (*hospice*, residenza sanitaria assistita, casa protetta, assistenza domiciliare integrata, altra struttura non ospedaliera di lungodegenza).

Laboratori considerati

Tutti i laboratori partecipanti sono stati inclusi nelle analisi.

Calcolo degli indicatori utilizzati

- Prevalenza di resistenza (NB nel calcolo di questo indicatore viene considerato solo
 il primo isolato dell'anno per paziente, materiale biologico e specie batterica; gli
 isolati della stessa specie ripetuti in uno stesso paziente e materiale biologico
 vengono pertanto esclusi): proporzione di pazienti con isolamento di
 microrganismo resistente o con sensibilità intermedia sul totale dei soggetti in cui
 è stato isolato quel microrganismo.
- Tasso di batteriemia: numero di episodi di batteriemia per 100.000 abitanti per anno. La durata massima di un episodio di batteriemia è stata fissata a 28 giorni.
 Gli isolamenti da emocoltura successivi a questo limite temporale sono stati considerati indicativi di un altro episodio di batteriemia. Al denominatore è stata utilizzata la popolazione come da tabelle ISTAT.

Antibiotici testati

Le analisi delle resistenze agli antibiotici sono, in alcuni casi, effettuate accorpando due o più molecole, come ad esempio:

- imipenem/meropenem
- amoxicillina/ampicillina
- gentamicina/tobramicina

La necessità di utilizzare questa modalità di analisi dipende dal fatto che i vari laboratori testano, per uno stesso microrganismo, diversi antibiotici. Gli accorpamenti non indicano quindi una equivalenza tra le molecole ma servono esclusivamente a presentare in maniera sintetica i dati di resistenza.

La resistenza a una classe di antibiotici viene definita come resistenza ad almeno uno degli antibiotici inclusi nella classe. Questo approccio tende a sovrastimare le resistenze agli aminoglicosidi poiché l'amikacina è significativamente più attiva degli altri aminoglicosidi nei confronti dei batteri Gram negativi. In considerazione di ciò, l'amikacina viene analizzata separatamente nelle Tabelle in Appendice 2.a che mostrano le resistenze per materiale biologico relativamente all'anno 2023.

Definizione di antibioticoresistenza

Per la definizione di antibioticoresistenza è stato utilizzato il dato fornito da ogni laboratorio. A partire dal 2011, i laboratori della Regione Emilia-Romagna utilizzano le linee guida europee per la definizione dei *breakpoint* e l'interpretazione degli antibiogrammi (EUCAST, 2023).

USO DI ANTIBIOTICI

Popolazione in studio

Per le analisi dei consumi in ambito territoriale sono stati inclusi tutti i residenti in Emilia-Romagna nel periodo 2016-2023. Per l'ambito ospedaliero sono stati calcolati i tassi di consumo relativi ai ricoveri in degenza ordinaria nel periodo 2016-2023.

Classificazione degli antibiotici

La classificazione degli antibiotici prescritti in molecole e classi di molecole è stata effettuata riferendosi alla classificazione ATC (Anatomic Therapeutical Chemical Classification) dell'Organizzazione mondiale della sanità (WHO Collaborating Centre for Drug Statistics Methodology, 2022). La codifica è formata da sette caratteri, di cui i primi tre indicano il gruppo terapeutico. Sono stati estratti dalle banche dati i farmaci con codifica che inizia con J01 (gruppo degli antibiotici sistemici).

Definizione delle unità di misura

L'unità di misura utilizzata è stata la dose definita giornaliera (DDD) (WHO Collaborating Centre for Drug Statistics Methodology, 2022).

DDD: dose di mantenimento media giornaliera di un farmaco usato per la sua indicazione principale nell'adulto.

Fonti informative

I dati anagrafici della popolazione dell'Emilia-Romagna si riferiscono alla popolazione di residenti al 1° gennaio fonte ISTAT. I dati relativi all'utilizzo degli antibiotici sistemici derivano invece dalle banche dati dell'assistenza farmaceutica territoriale (AFT), farmaci ad erogazione diretta (FED) e dell'assistenza farmaceutica ospedaliera (AFO).

Assistenza farmaceutica territoriale (AFT)

- Include tutte le prescrizioni di farmaci distribuiti dalle farmacie territoriali e rimborsati dal sistema sanitario con dati dettagliati a livello di ogni singola prescrizione (codice identificativo anonimo dell'assistito, data di prescrizione, molecola prescritta, DDD).
- La possibilità di collegare ogni singola prescrizione a uno specifico assistito consente di utilizzare, oltre alle DDD (riportate nel presente documento) anche altre unità di misura per il consumo di antibiotici, come le prescrizioni.
- Si è tenuto conto anche della mobilità passiva in ciascun anno di analisi.

Farmaci ad erogazione diretta (FED)

- Include tutti i farmaci erogati direttamente al paziente per un consumo al proprio domicilio:
 - da strutture ospedaliere, strutture ambulatoriali interne all'ospedale o territoriali, farmacie convenzionate;
 - erogazione alla dimissione da ricovero, erogazione a seguito di visita specialistica ambulatoriale, erogazione a pazienti affetti da malattie rare, erogazione diretta presso farmacie convenzionate, erogazione di farmaci necessari al trattamento di pazienti di strutture territoriali ambulatoriali, CSM, SerT.
- La possibilità di collegare ogni singola prescrizione a uno specifico assistito consente di utilizzare, oltre alle DDD (riportate nel presente documento) anche altre unità di misura per il consumo di antibiotici, come le prescrizioni.
- Si è tenuto conto anche della mobilità passiva in ciascun anno di analisi.

Assistenza farmaceutica ospedaliera (AFO)

- Include tutti i farmaci distribuiti dalle farmacie ospedaliere a:
 - strutture ospedaliere (ricovero ordinario, day hospital (DH), ambulatorio, dimissione da ricovero ed erogazione diretta);
 - strutture territoriali: consultori, ambulatori, SerT, RSA, ecc.

• I dati contenuti in questa banca dati sono aggregati per reparto e mese di distribuzione; è quindi possibile stimare i consumi solo in termini di DDD.

Selezione delle informazioni

Per i consumi territoriali sono state prese in esame tutte le prescrizioni di antibiotici sistemici (categoria ATC J01). Il tasso di consumo ospedaliero è stato calcolato considerando i consumi relativi ai ricoveri di tipo ordinario.

Indicatori di esposizione agli antibiotici

Tassi di consumo in ambito territoriale

I tassi sono stati calcolati come numero di DDD su 1.000 abitanti-*die* in ciascuno degli anni considerati; i risultati sono forniti per l'intera popolazione regionale e per fascia di età. Al denominatore è stata utilizzata la popolazione come da tabelle ISTAT.

Tassi di consumo in ambito ospedaliero

I tassi di consumo sono stati calcolati come numero di DDD relative alla degenza ordinaria su 100 giornate di degenza ordinaria in ciascuno degli anni considerati. Il calcolo ha incluso i consumi relativi alla degenza ordinaria; in linea con il metodo utilizzato in SIVER a partire dal 2017, sono stati invece esclusi i consumi interni in regime non classificato (né degenza ordinaria né *day hospital* né ambulatorio).

Appendice 2. Antibioticoresistenza

RESISTENZE PER MATERIALI

Emocolture 2023

Microrganismo	Antibiotico			
I isolato 2023		paz. testati	paz. R	% R
Escherichia coli n. pazienti	aminopenicilline	1.976	1.191	60,3
4887 (4884 sangue ,2	amoxicillina-ac.clavulanico	4.652	1.897	40,8
liquor,1 sangue e liquor)	piperacillina-tazobactam	4.872	372	7,6
	cefalosporine III gen.	4.886	1.137	23,3
	fluorochinoloni	4.883	1.357	27,8
	aminoglicosidi (escl. amikacina)	4.884	742	15,2
	imipenem/meropenem	4.553	9	0,2
	ertapenem	2.841	17	0,6
	trimethoprim-sulfametossazolo	4.866	1.419	29,2
	amikacina	4.824	142	2,9
Staphylococcus epidermidis	oxacillina	3.383	2.468	73,0
n. pazienti 3418	rifampicina (elaborazione solo per isolati oxacillino-R)	2.118	618	29,2
	vancomicina	3.410	4	0,1
	teicoplanina	1.258	115	9,1
	linezolid	2.826	107	3,8
Klebsiella pneumoniae n.	amoxicillina-ac.clavulanico	1.925	985	51,2
pazienti 2066	piperacillina-tazobactam	2.061	813	39,4
	cefalosporine III gen.	2.065	968	46,9
	fluorochinoloni	2.060	698	33,9
	gentamicina	2.060	354	17,2
	amikacina	2.037	88	4,3
	imipenem/meropenem	2.005	141	7,0
	ertapenem	1.270	122	9,6
	colistina*	568	19	3,3
	ceftazidime-avibactam	899	19	2,1
Staphylococcus aureus n.	oxacillina	1.984	434	21,9
pazienti 1984	rifampicina (elaborazione solo per isolati oxacillino-R)	338	22	6,5
Enterococcus faecalis n.	gentamicina HLR	743	217	29,2
pazienti 1106	vancomicina	1.106	4	0,4
	teicoplanina	1.098	4	0,4
Pseudomonas aeruginosa n.	ceftazidime	828	116	14,0
pazienti 835	fluorochinoloni	835	113	13,5
	tobramicina	317	5	1,6
	amikacina	828	12	1,4
	imipenem/meropenem	834	112	13,4
	ceftolozane/tazobactam	491	11	2,2
	gentamicina HLR	455	261	57,4
	-			

Microrganismo	Antibiotico			
I isolato 2023	·	paz. testati	paz. R	% R
Enterococcus faecium n.	vancomicina	697	243	34,9
pazienti 697	teicoplanina	689	233	33,8
Streptococcus pneumoniae	penicillina	338	12	3,6
n. pazienti 356 (330	aminopenicilline	288	3	1,0
sangue, 7 liquor, 19 sangue	eritromicina	351	78	22,2
e liquor)	cefotaxime/ceftriaxone	355	0	0,0
	levofloxacina	346	3	0,9
Enterobacter cloacae n.	piperacillina-tazobactam	353	107	30,3
pazienti 354	cefalosporine III gen.	315	117	37,1
	fluorochinoloni	353	16	4,5
	aminoglicosidi (escl. amikacina)	353	5	1,4
	amikacina	351	0	0,0
	imipenem/meropenem	340	2	0,6
Klebsiella oxytoca n.	amoxicillina-ac.clavulanico	222	30	13,5
pazienti 232	piperacillina-tazobactam	231	20	8,7
	cefalosporine III gen.	232	9	3,9
	fluorochinoloni	232	6	2,6
	aminoglicosidi (escl. amikacina)	232	5	2,2
	amikacina	230	3	1,3
	imipenem/meropenem	217	0	0,0
Serratia marcescens n.	piperacillina-tazobactam	187	14	7,5
pazienti 205	cefalosporine III gen.	205	17	8,3
	fluorochinoloni	205	8	3,9
	aminoglicosidi (escl. amikacina)	205	14	6,8
	amikacina	204	3	1,5
	imipenem/meropenem	165	1	0,6
Klebsiella aerogenes n.	piperacillina-tazobactam	139	75	54,0
pazienti 141	cefalosporine III gen.	120	75	62,5
	fluorochinoloni	141	5	3,5
	aminoglicosidi (escl. amikacina)	141	2	1,4
	amikacina	137	1	0,7
	imipenem/meropenem	139	2	1,4
Acinetobacter baumannii n.	fluorochinoloni	100	67	67,0
pazienti 103	gentamicina	97	52	53,6
	amikacina	100	58	58,0
	imipenem/meropenem	103	67	65,0

paz. R pazienti con isolamento di microrganismo resistente all'antibiotico testato.

^{*} I risultati relativi al saggio della colistina potrebbero essere stati ottenuti con metodiche non riconosciute valide da EUCAST, con necessità di riconferma.

Urinocolture 2023

Microrganismo	Antibiotico			
l isolato 2023		paz. testati	paz. R	% R
Escherichia coli n. pazienti	aminopenicilline	21.178	10.267	48,5
49038	amoxicillina-ac.clavulanico	48.378	15.496	32,0
	piperacillina-tazobactam	48.559	2.660	5,5
	cefalosporine III gen.	49.025	6.110	12,5
	fluorochinoloni	48.977	9.591	19,6
	aminoglicosidi (escl. amikacina)	49.011	4.542	9,3
	amikacina	48.797	575	1,2
	imipenem/meropenem	46.467	27	0,1
	ertapenem	33.993	94	0,3
	trimethoprim-sulfametossazolo	47.533	10.848	22,8
	nitrofurantoina	47.535	854	1,8
	fosfomicina+	44.941	1.220	2,7
Klebsiella pneumoniae n.	amoxicillina-ac.clavulanico	12.458	4.344	34,9
pazienti 12582	piperacillina-tazobactam	12.538	2.961	23,6
	cefalosporine III gen.	12.579	3.555	28,3
	fluorochinoloni	12.566	2.833	22,5
	gentamicina	12.570	1.250	9,9
	amikacina	12.458	278	2,2
	imipenem/meropenem	12.065	387	3,2
	ertapenem	8.930	409	4,6
	trimethoprim-sulfametossazolo	12.292	3.232	26,3
	colistina*	3.849	58	1,5
Enterococcus faecalis n.	gentamicina HLR	4.775	1.162	24,3
pazienti 8383	vancomicina	8.368	65	0,8
	teicoplanina	8.349	72	0,9
	nitrofurantoina	7.527	34	0,5
Proteus mirabilis n. pazienti	aminopenicilline	2.288	1.061	46,4
5514	amoxicillina-ac.clavulanico	5.478	1.047	19,1
	cefalosporine III gen.	5.514	940	17,0
	fluorochinoloni	5.509	1.999	36,3
	aminoglicosidi (escl. amikacina)	5.513	1.496	27,1
	amikacina	5.426	303	5,6
	trimethoprim-sulfametossazolo	5.355	2.120	39,6
Pseudomonas aeruginosa n.		220	31	14,1
pazienti 4412	piperacillina-tazobactam	4.391	807	18,4
	ceftazidime	4.407	613	13,9
	fluorochinoloni	4.408	608	13,8
	tobramicina	1.508	48	3,2
	amikacina	4.392	360	2,0
Marganalla mararasis a	imipenem/meropenem	4.410	369	8,4
Morganella morganii n. pazienti 1857	piperacillina-tazobactam	1.838	47	2,6
paziciiii 1007	cefalosporine III gen.	1.855	417	22,5
	fluorochinoloni	1.848	386	20,9
	aminoglicosidi (escl. amikacina)	1.855	178	9,6

Microrganismo	Antibiotico			
I isolato 2023	•	paz. testati	paz. R	% R
	amikacina	1.853	19	1,0
	trimethoprim-sulfametossazolo	1.803	360	20,0
Klebsiella oxytoca n.	amoxicillina-ac.clavulanico	1.531	138	9,0
pazienti 1550	cefalosporine III gen.	1.550	79	5,1
	fluorochinoloni	1.546	34	2,2
	aminoglicosidi (escl. amikacina)	1.549	20	1,3
	amikacina	1.547	8	0,5
	imipenem/meropenem	1.453	3	0,2
	trimethoprim-sulfametossazolo	1.487	52	3,5
Enterococcus faecium n.	gentamicina HLR	674	350	51,9
pazienti 1519	vancomicina	1.518	465	30,6
	teicoplanina	1.515	454	30,0
Enterobacter cloacae n.	piperacillina-tazobactam	1.418	386	27,2
pazienti 1432	cefalosporine III gen.	1.257	485	38,6
	fluorochinoloni	1.429	68	4,8
	aminoglicosidi (escl. amikacina)	1.429	36	2,5
	amikacina	1.429	5	0,3
	imipenem/meropenem	1.400	8	0,6
Staphylococcus aureus n.	oxacillina	1.046	248	23,7
pazienti 1049	rifampicina (elaborazione solo per isolati oxacillino-R)	171	17	9,9
	trimethoprim-sulfametossazolo	1.046	16	1,5
Klebsiella aerogenes n.	piperacillina-tazobactam	900	246	27,3
pazienti 907	cefalosporine III gen.	789	268	34,0
	fluorochinoloni	905	29	3,2
	aminoglicosidi (escl. amikacina)	906	10	1,1
	amikacina	904	0	0,0
	imipenem/meropenem	905	0	0,0
Serratia marcescens n.	piperacillina-tazobactam	243	23	9,5
pazienti 265	cefalosporine III gen.	264	47	17,8
	fluorochinoloni	265	21	7,9
	aminoglicosidi (escl. amikacina)	265	10	3,8
	amikacina	264	6	2,3
	imipenem/meropenem	240	0	0,0
Acinetobacter baumannii n.	fluorochinoloni	133	90	67,7
pazienti 133	gentamicina	133	85	63,9
	amikacina	133	80	60,2
	imipenem/meropenem	132	84	63,6

* I risultati relativi al saggio della colistina potrebbero essere stati ottenuti con metodiche non riconosciute valide da EUCAST, con necessità di riconferma.

- + Il metodo di riferimento per il saggio della fosfomicina è l'agar diluizione. Se l'antibiogramma è stato effettuato con altro metodo, i risultati potrebbero non essere attendibili.
- paz. R pazienti con isolamento di microrganismo resistente all'antibiotico testato.

Escreato/broncoaspirato/BAL/brushing 2023

Microrganismo	Antibiotico			
l isolato 2023		paz. testati	paz. R	% F
Pseudomonas aeruginosa n.	piperacillina-tazobactam	1.353	306	22,6
pazienti 1359	ceftazidime	1.354	246	18,2
	fluorochinoloni	1.358	244	18,0
	tobramicina	566	42	7,4
	amikacina	1.346	49	3,6
	imipenem/meropenem	1.358	254	18,7
Staphylococcus aureus n.	oxacillina	1.145	203	17,7
pazienti 1147	rifampicina (elaborazione solo per isolati oxacillino-R)	141	10	7,1
	rifampicina	809	23	2,8
	eritromicina	1.147	404	35,2
	clindamicina	1.146	365	31,8
	trimethoprim-sulfametossazolo	1.137	25	2,2
Klebsiella pneumoniae n.	amoxicillina-ac.clavulanico	779	422	54,2
pazienti 895	piperacillina-tazobactam	893	372	41,7
	cefalosporine III gen.	895	362	40,4
	fluorochinoloni	888	231	26,0
	gentamicina	894	101	11,3
	amikacina	880	26	3,0
	imipenem/meropenem	846	63	7,4
	ertapenem	599	65	10,9
	trimethoprim-sulfametossazolo	867	325	37,5
	colistina*	124	5	4,0
Escherichia coli n. pazienti	aminopenicilline	380	212	55,8
662	amoxicillina-ac.clavulanico	591	248	42,0
	piperacillina-tazobactam	662	83	12,5
scherichia coli n. pazienti 62 Gaemophilus influenzae n.	cefalosporine III gen.	662	149	22,5
	fluorochinoloni	658	181	27,5
	aminoglicosidi (escl. amikacina)	661	75	11,3
	imipenem/meropenem	609	3	0,5
	ertapenem	444	6	1,4
	trimethoprim-sulfametossazolo	649	180	27,7
Haemophilus influenzae n.	aminopenicilline	568	88	15,5
pazienti 624	penicilline + inibitori betalattamasi	355	18	5,1
	cefotaxime/ceftriaxone	623	6	1,0
	fluorochinoloni	311	19	6,1
	trimethoprim-sulfametossazolo	615	165	26,8
Serratia marcescens n.	piperacillina-tazobactam	273	24	8,8
pazienti 302	cefalosporine III gen.	302	34	11,3
	fluorochinoloni	302	11	3,6
	aminoglicosidi (escl. amikacina)	302	14	4,6
	amikacina	299	4	1,3
	imipenem/meropenem	234	1	0,4
Enterobacter cloacae n.	piperacillina-tazobactam	286	56	19,6
pazienti 286	cefalosporine III gen.	261	71	27,2

Microrganismo	Antibiotico			
I isolato 2023		paz. testati	paz. R	% R
	fluorochinoloni	284	7	2,5
	aminoglicosidi (escl. amikacina)	286	5	1,7
	amikacina	279	1	0,4
	imipenem/meropenem	272	4	1,5
	trimethoprim-sulfametossazolo	275	14	5,1
Stenotrophomonas maltophilia n. pazienti 258	trimethoprim-sulfametossazolo	258	6	2,3
Klebsiella oxytoca n.	amoxicillina-ac.clavulanico	197	23	11,7
pazienti 232	piperacillina-tazobactam	230	23	10,0
	cefalosporine III gen.	232	11	4,7
	fluorochinoloni	231	3	1,3
	aminoglicosidi (escl. amikacina)	232	1	0,4
	amikacina	228	1	0,4
	imipenem/meropenem	210	1	0,5
	trimethoprim-sulfametossazolo	228	5	2,2
Proteus mirabilis n. pazienti 208	amoxicillina-ac.clavulanico	183	49	26,8
	piperacillina-tazobactam	208	4	1,9
	cefalosporine III gen.	208	64	30,8
	fluorochinoloni	208	90	43,3
	aminoglicosidi (escl. amikacina)	208	78	37,5
	amikacina	203	19	9,4
	trimethoprim-sulfametossazolo	204	87	42,6
Streptococcus pneumoniae	penicillina	141	12	8,5
n. pazienti 169	aminopenicilline	145	33	22,8
	eritromicina	168	83	49,4
	clindamicina	145	47	32,4
	cefotaxime/ceftriaxone	168	8	4,8
	levofloxacina	169	12	7,1
	trimethoprim-sulfametossazolo	148	18	12,2
Acinetobacter baumannii n.	fluorochinoloni	155	107	69,0
pazienti 156	gentamicina	155	101	65,2
	amikacina	155	99	63,9
	imipenem/meropenem	156	105	67,3
Klebsiella aerogenes n.	piperacillina-tazobactam	129	47	36,4
pazienti 129	cefalosporine III gen.	118	49	41,5
	fluorochinoloni	129	4	3,1
	aminoglicosidi (escl. amikacina)	129	4	3,1
	amikacina	129	0	0,0
	imipenem/meropenem	126	3	2,4

^{*} I risultati relativi al saggio della colistina potrebbero essere stati ottenuti con metodiche non riconosciute valide da EUCAST, con necessità di riconferma.

paz. R pazienti con isolamento di microrganismo resistente all'antibiotico testato.

Tamponi genitali 2023

Microrganismo	Antibiotico			
I isolato 2023		paz. testati	paz. R	% R
Neisseria gonorrhoeae n.	tetraciclina	75	28	37,3
pazienti 127	cefalosporine III gen.	127	1	0,8
	ciprofloxacina/norfloxacina	118	77	65,3

Legenda

paz. R pazienti con isolamento di microrganismo resistente all'antibiotico testato.

paz. IR pazienti con isolamento di microrganismo resistente o con resistenza intermedia all'antibiotico testato.

Feci 2023

Microrganismo	Antibiotico			
I isolato 2023		paz. testati	paz. R	% R
Campylobacter sp. n. pazienti 495	eritromicina	488	13	2,7
	tetraciclina	392	226	57,7
	fluorochinoloni	408	311	76,2
Salmonella sp. n. pazienti	aminopenicilline	151	73	48,3
274	amoxicillina-ac.clavulanico	272	76	27,9
	cefalosporine III gen.	273	6	2,2
	trimethoprim-sulfametossazolo	274	27	9,9

Legenda

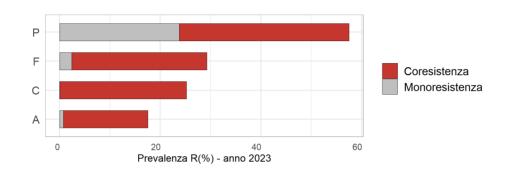
paz. R pazienti con isolamento di microrganismo resistente all'antibiotico testato.

paz. IR pazienti con isolamento di microrganismo resistente o con resistenza intermedia all'antibiotico testato.

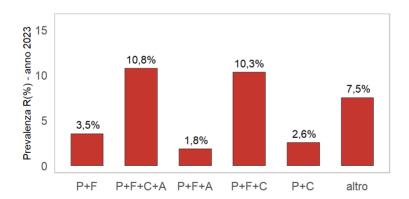
Pus/essudato 2023

Microrganismo	Antibiotico			
l isolato 2023		paz. testati	paz. R	% R
Staphylococcus aureus n.	oxacillina	3.664	725	19,8
pazienti 3669	rifampicina (elaborazione solo per isolati oxacillino-R)	650	56	8,6
	eritromicina	3.662	1.208	33,0
	clindamicina	3.660	1.129	30,8
	trimethoprim-sulfametossazolo	3.398	131	3,9
Escherichia coli n. pazienti	aminopenicilline	764	467	61,1
1951	amoxicillina-ac.clavulanico	1.908	834	43,7
	cefalosporine III gen.	1.948	367	18,8
	fluorochinoloni	1.947	441	22,7
	aminoglicosidi (escl. amikacina)	1.947	234	12,0
	imipenem/meropenem	1.767	13	0,7
	ertapenem	1.385	6	0,4
	amikacina	1.933	38	2,0
	piperacillina-tazobactam	1.935	199	10,3
Klebsiella pneumoniae n. pazienti 1777	amoxicillina-ac.clavulanico	1.266	628	49,6
	cefalosporine III gen.	1.548	592	38,2
	fluorochinoloni	1.755	606	34,5
	gentamicina	1.689	363	21,5
	amikacina	1.497	100	6,7
	imipenem/meropenem	1.493	209	14,0
	ertapenem	1.140	115	10,1
	trimethoprim-sulfametossazolo	1.597	548	34,3
	colistina*	402	10	2,5
	piperacillina-tazobactam	1.505	545	36,2
Pseudomonas aeruginosa n.	piperacillina-tazobactam	1.668	356	21,3
pazienti 1671	ceftazidime	1.667	251	15,1
	fluorochinoloni	1.669	315	18,9
	tobramicina	779	15	1,9
	amikacina	1.658	21	1,3
	imipenem/meropenem	1.671	142	8,5
Enterococcus faecalis n.	gentamicina HLR	467	121	25,9
pazienti 1272	vancomicina	1.269	15	1,2
	teicoplanina	1.266	22	1,7
Proteus mirabilis n. pazienti	amoxicillina-ac.clavulanico	948	246	25,9
960	cefalosporine III gen.	960	205	21,4
	fluorochinoloni	958	353	36,8
	aminoglicosidi (escl. amikacina)	960	278	29,0
	amikacina	944	46	4,9
	trimethoprim-sulfametossazolo	898	362	40,3
Futural vature 1	piperacillina-tazobactam	957	20	2,1
Enterobacter cloacae n. pazienti 633	piperacillina-tazobactam	630	137	21,7
puziciiti 055	cefalosporine III gen.	573	176	30,7
	fluorochinoloni	633	26	4,1
	aminoglicosidi (escl. amikacina)	632	15	2,4

Microrganismo	Antibiotico			
I isolato 2023		paz. testati	paz. R	% R
	amikacina	631	3	0,5
	imipenem/meropenem	618	5	0,8
	trimethoprim-sulfametossazolo	580	28	4,8
Enterococcus faecium n.	gentamicina HLR	217	109	50,2
pazienti 581	vancomicina	580	188	32,4
	teicoplanina	574	179	31,2
Morganella morganii n.	piperacillina-tazobactam	469	9	1,9
pazienti 477	cefalosporine III gen.	477	107	22,4
	fluorochinoloni	476	83	17,4
	aminoglicosidi (escl. amikacina)	475	43	9,1
	amikacina	476	4	0,8
	trimethoprim-sulfametossazolo	460	69	15,0
Serratia marcescens n. pazienti 267	piperacillina-tazobactam	245	14	5,7
	cefalosporine III gen.	266	32	12,0
	fluorochinoloni	267	14	5,2
	aminoglicosidi (escl. amikacina)	267	19	7,1
	amikacina	266	266 32 267 14 267 19	1,9
Klebsiella oxytoca n.	amoxicillina-ac.clavulanico	257	36	14,0
pazienti 263	cefalosporine III gen.	263	11	4,2
	fluorochinoloni	263	7	2,7
	aminoglicosidi (escl. amikacina)	263	5	1,9
	amikacina	262	1	0,4
	trimethoprim-sulfametossazolo	248	11	4,4
Streptococcus pyogenes n.	eritromicina	227	40	17,6
pazienti 227	clindamicina	226	24	10,6
	trimethoprim-sulfametossazolo	168	18	10,7
Streptococcus agalactiae n.	eritromicina	189	67	35,4
pazienti 226	clindamicina	220	61	27,7
	trimethoprim-sulfametossazolo	219	26	11,9
Acinetobacter baumannii n.	fluorochinoloni	114	81	71,1
pazienti 116	gentamicina	114	71	62,3
	amikacina	116	74	63,8
	imipenem/meropenem	116	80	69,0

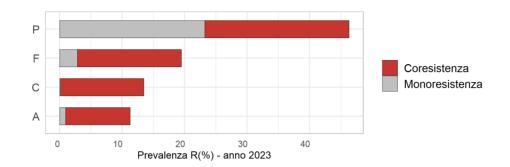

^{*} I risultati relativi al saggio della colistina potrebbero essere stati ottenuti con metodiche non riconosciute valide da EUCAST, con necessità di riconferma.

paz. R pazienti con isolamento di microrganismo resistente all'antibiotico testato.


RESISTENZE COMBINATE

A=aminoglicosidi; F=fluorochinoloni; C=cefalosporine III generazione; P=aminopenicilline

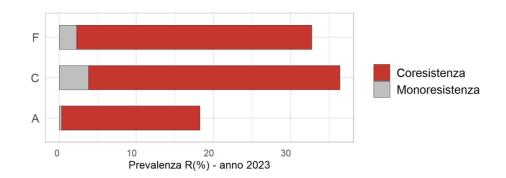
Figura Ap.1 - Escherichia coli da emocolture e liquorcolture: fenotipi di resistenza ad aminoglicosidi, cefalosporine di III generazione, fluorochinoloni e aminopenicilline (Regione Emilia-Romagna 2023)


Prevalenza R (%) - Anno 2023	Classe di antibiotico					
	А	С	F	Р		
Coresistenza	16,8	25,2	26,8	33,8		
Monoresistenza	0,7	0,1	2,4	23,8		

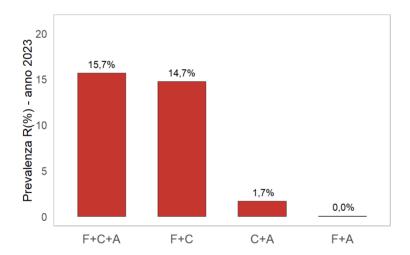
Legenda

Nell'asse orizzontale vengono indicate le diverse combinazioni di non sensibilità agli antibiotici. Ad esempio, la colonna P+F indica la percentuale di isolati da emocoltura non sensibili ad aminopenicilline e fluorochinoloni.

Figura Ap.2 - *Escherichia coli* da urinocolture: fenotipi di resistenza ad aminoglicosidi, cefalosporine di III generazione, fluorochinoloni e aminopenicilline (Regione Emilia-Romagna 2023)

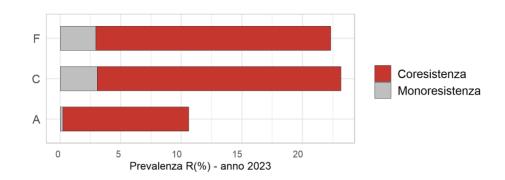


Prevalenza R (%) - Anno 2023	Classe di antibiotico						
	А	С	F	Р			
Coresistenza	10,3	13,4	16,7	23,1			
Monoresistenza	0,9	0,1	2,8	23,2			



Nell'asse orizzontale vengono indicate le diverse combinazioni di non sensibilità agli antibiotici. Ad esempio, la colonna P+F indica la percentuale di isolati da emocoltura non sensibili ad aminopenicilline e fluorochinoloni.

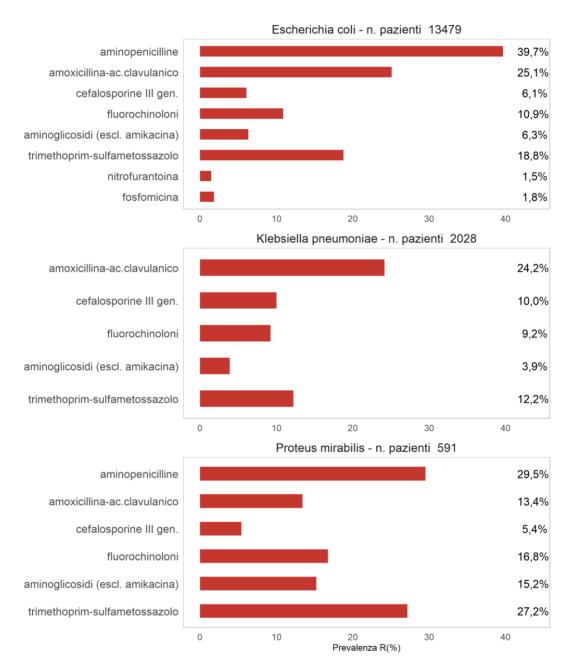
Figura Ap.3- *Klebsiella pneumoniae* da emocolture: fenotipi di resistenza ad aminoglicosidi, cefalosporine di III generazione e fluorochinoloni (Regione Emilia-Romagna 2023)



Prevalenza R (%) - Anno 2023	Classe di antibiotico						
	А	С	F				
Coresistenza	18,0	32,6	30,5				
Monoresistenza	0,3						

Nell'asse orizzontale vengono indicate le diverse combinazioni di non sensibilità agli antibiotici. Ad esempio, la colonna F+C+A indica la percentuale di isolati da emocoltura non sensibili a fluorochinoloni, cefalosporine di III generazione e aminoglicosidi.

Figura Ap.4 - *Klebsiella pneumoniae* da urinocolture: fenotipi di resistenza ad aminoglicosidi, cefalosporine di III generazione e fluorochinoloni (Regione Emilia-Romagna 2023)



Prevalenza R (%) - Anno 2023	Classe di antibiotico						
	А	С	F				
Coresistenza	10,4	20,1	19,4				
Monoresistenza	0,2	0,2 3,0 2,9					

Nell'asse orizzontale vengono indicate le diverse combinazioni di non sensibilità agli antibiotici. Ad esempio, la colonna F+C+A indica la percentuale di isolati da emocoltura non sensibili a fluorochinoloni, cefalosporine di III generazione e aminoglicosidi.

Figura Ap.5 - Prevalenza di resistenza dei più comuni Enterobatteri isolati dalle urinocolture in donne di età ≤65 anni, pazienti esterni * (Regione Emilia-Romagna, 2023)

^{*} Il metodo di riferimento per il saggio della fosfomicina è l'agar diluizione. Se l'antibiogramma è stato effettuato con altro metodo, i risultati potrebbero non essere attendibili.

VOLUME ATTIVITÀ NEGLI ANNI

Tabella Ap1 - Colture batteriche eseguite nel periodo 2022 per materiale e tipologia di struttura richiedente

	Ospedale		Ospedale Pronto soccorso		Amb	Ambulatorio		struttura	Totale	
	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive
Urine	98.681	30,8	23.137	40,5	258.216	22,6	17.174	28,8	397.208	26,0
Sangue	92.857	20,9	23.020	32,0	11.567	18,4	912	25,5	128.356	22,7
Liquor	1.857	6,3	232	6,5	511	10,0	2	0,0	2.602	7,0
Pus Essudati	59.299	20,0	4.517	8,8	35.344	13,6	2.003	35,5	101.163	17,6
Feci	34.787	8,4	695	18,6	25.156	8,0	2.291	6,9	62.929	8,3
Basse vie respiratorie	22.938	31,8	90	46,7	7.714	34,6	1.760	14,5	32.502	31,6
Alte vie respiratorie	24.735	11,0	172	20,3	10.283	22,3	542	12,2	35.732	14,3
Tamponi genitali	5.775	20,2	64	34,4	40.322	22,5	606	7,4	46.767	22,0
Altro materiale	10.671	28,3	292	25,0	4.181	27,5	187	15,5	15.331	27,9
Totale	351.600	22,5	52.219	33,4	393.294	21,0	25.477	25,3	822.590	22,5

NB Per i materiali (in particolare l'emocoltura) per i quali vengono fatti più prelievi nello stesso giorno, il conteggio del "numero esami" è stato eseguito considerando per ogni paziente un solo esame per materiale e giorno, anche nel caso siano stati eseguiti due o più prelievi. In questo modo, è possibile avere una figura comparativa del ricorso alle colture per i diversi materiali considerati.

Sorveglianza dell'antibioticoresistenza e uso di antibiotici sistemici in Emilia-Romagna rapporto 2023

Tabella Ap2 - Colture batteriche eseguite nel periodo 2021 per materiale e tipologia di struttura richiedente

	Ospedale		Pronto soccorso		Ambulatorio		Altra struttura		Totale	
	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive
Urine	90.475	32,5	18.268	42,2	239.676	21,6	17.049	31,3	365.468	25,8
Sangue	81.463	21,6	20.042	32,6	4.549	24,9	854	26,1	106.908	23,8
Liquor	1.775	5,2	132	4,5	201	5,5	2	50,0	2.110	5,3
Pus Essudati	45.412	23,9	3.890	8,6	25.312	16,7	1.978	36,6	76.592	21,1
Feci	32.666	9,2	526	22,1	22.383	7,7	2.841	5,5	58.416	8,6
Basse vie respiratorie	23.173	32,3	70	47,1	6.058	34,4	1.935	14,8	31.236	31,6
Alte vie respiratorie	20.685	11,5	109	21,1	8.098	22,1	355	13,8	29.247	14,5
Tamponi genitali	5.712	20,0	59	28,8	38.951	21,7	609	8,9	45.331	21,4
Altro materiale	9.631	31,2	229	27,5	3.506	26,0	228	10,1	13.594	29,4
Totale	310.992	24,1	43.325	34,3	348.734	20,7	25.851	26,5	728.902	23,1

NB Per i materiali (in particolare l'emocoltura) per i quali vengono fatti più prelievi nello stesso giorno, il conteggio del "numero esami" è stato eseguito considerando per ogni paziente un solo esame per materiale e giorno, anche nel caso siano stati eseguiti due o più prelievi. In questo modo, è possibile avere una figura comparativa del ricorso alle colture per i diversi materiali considerati.

Sorveglianza dell'antibioticoresistenza e uso di antibiotici sistemici in Emilia-Romagna rapporto 2023

Tabella Ap3 - Colture batteriche eseguite nel periodo 2020 per materiale e tipologia di struttura richiedente

	Ospedale		Pronto soccorso		Ambulatorio		Altra struttura		Totale	
	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive	N. esami	% colture positive
Urine	83.520	33,6	12.557	41,9	204.003	22,0	16.087	35,2	316.167	26,5
Sangue	75.986	22,2	17.491	32,1	3.864	21,8	920	27,9	98.261	24,0
Liquor	1.757	6,2	135	11,9	126	14,3	8	37,5	2.026	7,2
Pus Essudati	39.603	27,1	2.904	8,6	24.743	16,5	2.081	34,2	69.331	22,7
Feci	25.551	9,5	427	22,0	18.182	7,9	1.950	6,2	46.110	8,9
Basse vie respiratorie	22.779	33,6	46	43,5	5.256	29,3	1.548	14,9	29.629	31,9
Alte vie respiratorie	16.879	16,2	159	23,9	9.829	20,6	363	17,1	27.230	17,8
Tamponi genitali	6.117	22,1	49	32,7	33.765	20,9	482	11,4	40.413	21,0
Altro materiale	8.750	30,5	196	25,0	2.790	23,5	143	15,4	11.879	28,5
Totale	280.942	25,8	33.964	33,5	302.558	20,6	23.582	30,2	641.046	24,0

NB Per i materiali (in particolare l'emocoltura) per i quali vengono fatti più prelievi nello stesso giorno, il conteggio del "numero esami" è stato eseguito considerando per ogni paziente un solo esame per materiale e giorno, anche nel caso siano stati eseguiti due o più prelievi. In questo modo, è possibile avere una figura comparativa del ricorso alle colture per i diversi materiali considerati.

