

Ablazione transcatetere mediante criopallone per il trattamento della fibrillazione atriale

VALUTAZIONE RAPIDA

La redazione del rapporto è a cura di

Antonella Negro Agenzia sanitaria e sociale regionale dell'Emilia-Romagna
Susanna Maltoni Agenzia sanitaria e sociale regionale dell'Emilia-Romagna
Valentina Pecoraro Agenzia sanitaria e sociale regionale dell'Emilia-Romagna
Maria Domenica Camerlingo Agenzia sanitaria e sociale regionale dell'Emilia-Romagna
Giulia Falasca Servizio strutture, tecnologie e sistemi informativi, RER
Federica Lauretti Servizio strutture, tecnologie e sistemi informativi, RER

Questo documento va citato come

Negro A, Maltoni S, Pecoraro V, Camerlingo M, Falasca G, Lauretti F. Ablazione transcatetere mediante criopallone per il trattamento della fibrillazione atriale. Valutazione rapida n. 1. Agenzia sanitaria e sociale regionale. Regione Emilia-Romagna. Bologna, ottobre 2017.

Ringraziamenti

Si ringraziano il dott. Mauro Biffi dell'Azienda ospedaliero-universitaria - Policlinico S. Orsola di Bologna, il prof. Giuseppe Boriani dell'Azienda ospedaliero-universitaria - Policlinico di Modena, il dott. Marco Marconi dell'Azienda USL della Romagna e il dott. Biagio Sassone dell'Azienda USL di Ferrara per il contributo fornito alla definizione del razionale della tecnologia, dei quesiti e del protocollo di ricerca della valutazione rapida e alla revisione della bozza del documento. Si ringraziano inoltre i componenti del Comitato tecnico-scientifico della Commissione regionale Dispositivi medici della Regione Emilia-Romagna per i commenti alla bozza del protocollo e della valutazione rapida.

Redazione e impaginazione a cura di

Federica Sarti - Agenzia sanitaria e sociale regionale dell'Emilia-Romagna ottobre 2017

Copia del documento può essere scaricata dal sito Internet

http://assr.regione.emilia-romagna.it/

Chiunque è autorizzato per fini informativi, di studio o didattici, a utilizzare e duplicare i contenuti di questa pubblicazione, purché sia citata la fonte.

INDICE

Abbreviazioni	5
Premessa	7
Riassunto della valutazione	9
Razionale della tecnologia	17
Quesiti di ricerca	19
Descrizione e caratteristiche tecniche della tecnologia	21
Problema clinico e attuale utilizzo della tecnologia	25
Condizione clinica oggetto della valutazione	25
Trattamento standard della condizione clinica	26
Stima del numero di pazienti destinatari della tecnologia	28
Attuale diffusione della tecnologia	29
Valutazione degli esiti di efficacia, sicurezza e performance tecnica	31
Risultati della ricerca della letteratura secondaria	31
Risultati della ricerca della letteratura primaria e della consultazione delle dati di dispositivo-vigilanza	banche 35
Risultati della valutazione di efficacia, sicurezza e performance tecnica	37
Studi in corso	57
Discussione	59
Conclusioni	63
Referenze	65
Disclaimer	79
	(continua)

Appendici	81
Appendice 1. Criopalloni presenti in commercio in Italia	83
APPENDICE 2. Componenti del Sistema Arctic Front	85
APPENDICE 2BIS. Consumi cateteri ablativi a radiofrequenza, nazionali e regional	li 86
Appendice 3. Strategia di ricerca della letteratura scientifica	109
APPENDICE 4. Qualità metodologica degli studi	117
Appendice 5. Avvisi di sicurezza	121
APPENDICE 6. Eventi avversi riportati nella banca dati MAUDE	123
APPENDICE 7. Forest plot relativi alle metanalisi effettuate	125
Appendice 8. Tabella riassuntiva degli studi in corso	139

ABBREVIAZIONI

ASSR Agenzia sanitaria e sociale regionale dell'Emilia-Romagna

CA crioablazione

CB criopallone (cryoballoon)

CB1 criopallone di 1^a generazione (Arctic Front®)

CB2 criopallone di 2^a generazione (Arctic Front Advance[®])

CB3 criopallone di 3^a generazione (Arctic Front Advance-ST®)

CRDM Commissione regionale Dispositivi medici

FA fibrillazione atriale

RF radiofrequenza

MTCA catetere a radiofrequenza multielettrodo

PVI pulmonary vein isolation - isolamento delle vene polmonari

TA tachiaritmie atriali

PREMESSA

La valutazione rapida è stata commissionata all'Agenzia sanitaria e sociale regionale dalla Commissione regionale Dispositivi medici della Regione Emilia-Romagna in seguito ad una richiesta di autorizzazione all'utilizzo avanzata da clinici dell'Area vasta Emilia nord. È stata prodotta mediante la metodologia definita nel documento "Metodologia per le valutazioni rapide di tecnologie sanitarie", pubblicato a luglio 2017 [Maltoni 2017] e disponibile sul sito dell'ASSR.

RIASSUNTO DELLA VALUTAZIONE

Introduzione

Condizione clinica e trattamento standard

La fibrillazione atriale è il tipo di aritmia più comune: può essere o meno associata a danni strutturali cardiaci e, a lungo termine, aumenta il rischio di eventi tromboembolici, ictus, scompenso cardiaco e morte.

Viene classificata sulla base della durata degli episodi e viene distinta in parossistica, persistente, persistente di lunga durata e permanente. L'incidenza e la prevalenza aumentano con l'età, il sesso maschile, l'obesità, il fumo, l'ipertiroidismo, la malattia cardiovascolare in generale. Si stima che in Italia la prevalenza in soggetti di età superiore ai 15 anni sia del 2% circa; di questi, il 55,1% è affetto dalla forma permanente, il 24,3% da quella persistente e il 20,1% da quella parossistica.

Il trattamento della fibrillazione atriale prevede il controllo della frequenza o del ritmo cardiaco, la prevenzione di eventi tromboembolici e il trattamento delle condizioni predisponenti e/o associate. Il trattamento iniziale è solitamente farmacologico, finalizzato al controllo della frequenza o del ritmo cardiaco. Per il controllo del ritmo cardiaco si utilizzano anche tecniche ablative (transcatetere o chirurgiche).

Descrizione della tecnologia, del comparatore e stima della popolazione target

La crioablazione è un tipo di ablazione transcatetere, una metodica minimamente invasiva eseguita in anestesia locale o generale che consiste nel raggiungimento della cavità cardiaca mediante un catetere solitamente inserito nella vena femorale. Il catetere permette di identificare e successivamente isolare i foci aritmogeni che sono per lo più localizzati a livello delle vene polmonari dell'atrio sinistro (*pulmonary veins isolation*, PVI). Per una procedura efficace, deve essere ottenuto il blocco elettrico bidirezionale di tutte e quattro le vene polmonari.

La metodica viene indicata dalle linee guida come opzione possibile in pazienti intolleranti o resistenti al trattamento con farmaci anti-aritmici; viene sottolineato che la maggior parte delle evidenze disponibili si riferisce alla fibrillazione atriale parossistica.

Attualmente, il metodo ablativo transcatetere maggiormente utilizzato è quello a radiofrequenza con cateteri mono o multielettrodo, lineari o circolari, irrigati e non, a *contact-force* o meno, eroganti radiofrequenza uni- o bipolare.

La crioablazione può essere effettuata mediante cateteri lineari, circolari o a palloncino (cryoballoon).

Al momento, l'unica azienda che produce il criopallone è Medtronic. Esistono tre modelli di criopallone: Arctic Front[®] (criopallone di 1ª generazione, CB1), Arctic Front Advance[®] (criopallone

di 2ª generazione, CB2) e Arctic Front Advance ST[®] (criopallone di 3ª generazione, CB3); tutti sono disponibili con diametro di 23 o 28 mm. Il costo medio del dispositivo - ricavato dall'analisi dei consumi delle banche dati ministeriali e regionali - è di circa 4.000 €. Il costo medio dei cateteri a radiofrequenza ricavato dalle medesime fonti è compreso in un *range* di 366-2.883 € per i cateteri lineari e 2.928-4.575 € per quelli tridimensionali.

Sulla base dell'analisi delle banche dati amministrative e dei registri regionali, in Emilia-Romagna è stato stimato che 220 pazienti (di cui 160 con fibrillazione atriale parossistica e 60 con FA persistente) sono candidabili al trattamento con criopallone, in sostituzione del catetere a radiofreguenza.

Metodi

Razionale e quesiti di ricerca

Il razionale, i quesiti di ricerca e i corrispondenti PICOTS della valutazione rapida sono stati definiti insieme ad alcuni componenti della Commissione regionale Dispositivi medici e a un gruppo di clinici regionali esperti in tecniche di ablazione transcatetere.

Razionale

Nel trattamento della fibrillazione atriale, l'ablazione con criopallone offre vantaggi in termini di efficacia e sicurezza (possibilità di criomappaggio prima di effettuare l'isolamento delle vene polmonari vero e proprio, ridotto tempo di permanenza in atrio sinistro con conseguente riduzione delle complicanze) e di *performance* tecnica (ridotto tempo di procedura e di fluoroscopia, facilità d'uso).

Quesiti di ricerca

Sono stati definiti due quesiti di ricerca: definizione del profilo di efficacia, sicurezza e *performance* tecnica dell'ablazione con criopallone rispetto a quella con catetere a radiofrequenza nella fibrillazione atriale parossistica (*quesito di ricerca n. 1*, QR1) e persistente (*quesito di ricerca n. 2*, QR2).

Per ciascun quesito sono stati identificati:

- P popolazione: soggetti con fibrillazione atriale parossistica (QR1) o persistente (QR2) candidati all'isolamento delle vene polmonari (PVI) mediante ablazione transcatetere e non precedentemente trattati con tecniche ablative
- I intervento: PVI mediante criopallone
- C comparatore: PVI mediante catetere a radiofrequenza
- O esiti da valutare: efficacia (controllo dei sintomi associati a fibrillazione atriale e/o mantenimento del ritmo sinusale, ripetizione della procedura ablativa, somministrazione farmaci anti-aritmici, cardioversione elettrica o farmacologica, accessi ospedalieri per FA), sicurezza (complicanze periprocedurali, eventi avversi post-procedurali) e performance tecnica (tempo totale di procedura, tempo di fluoroscopia, tempo di permanenza in atrio sinistro, successo al termine della procedura)

- T tempo di *follow up*: maggiore di 12 mesi (senza considerare il periodo di *blanking*, ovvero i 90 giorni successivi all'intervento ablativo)
- S disegno di studio: secondari (HTA e revisioni sistematiche che rispondevano a criteri minimi di validità interna), primari (RCTs e studi osservazionali controllati con un numero di pazienti maggiore di 10; per la sicurezza: dati riportati in banche dati di dispositivo-vigilanza), studi in corso.

Risultati

Letteratura secondaria

È stata eseguita un'ampia ricerca della letteratura secondaria che ha portato al reperimento di 82 documenti; ne sono stati inclusi 4 di buona qualità (2 valutazioni di agenzie governative e 2 revisioni sistematiche e metanalisi), aggiornati al 2016, che hanno valutato anche il CB2 nelle due indicazioni di interesse.

Le due valutazioni [HAS 2016, Health Net 2016] concludono che l'isolamento delle vene polmonari con criopallone può essere considerata un'alternativa all'ablazione punto a punto effettuata con catetere lineare a radiofrequenza per entrambe le indicazioni, anche se si sottolinea che le evidenze sono riferite quasi esclusivamente al trattamento della fibrillazione atriale parossistica.

Le due revisioni sistematiche e metanalisi [Cardoso 2016, Liu 2016] hanno confrontato l'ablazione transcatetere con criopallone verso quella con catetere a radiofrequenza. Entrambe hanno incluso sia RCT che studi osservazionali ma si differenziano per alcuni criteri di inclusione ed esclusione degli studi.

La metanalisi della revisione di Cardoso [Cardoso 2016], che ha incluso 5 RCT e 17 studi osservazionali controllati per un totale di 8.668 pazienti, evidenzia una differenza statisticamente significativa a favore del criopallone solo per la presenza di tachiaritmie non riconducibili alla fibrillazione atriale (OR 0,46, IC95% 0,26-0,83, p<0,01), il tempo di procedura (differenza media pesata: -28,9 minuti, IC95% da -49,0 a -8,8 minuti, p<0,01) e l'incidenza di tamponamento cardiaco o di effusione pericardica (rispettivamente OR 0,44, IC95% 0,28-0,69, p<0,01 e OR 0,31, IC95% 0,15-0,64, p<0,01). Non viene riportata invece una differenza significativa per l'assenza di tachiaritmie atriali (OR 1.12, IC95% 0,97-1,29, p=0,13), il tasso di re-interventi (OR 0,81, IC95% 0,55-1,18, p=0.26), il tempo di fluoroscopia (differenza media pesata: -2,6 minuti, IC95% da -6,4 a +1,3 minuti) e l'incidenza di complicanze vascolari totali e maggiori e di ictus. L'incidenza di lesione del nervo frenico alla dimissione risulta più frequente nei pazienti trattati con criopallone (OR 7,40, IC95% 2,56-21,34) ma i pazienti con lesione persistente a 12 mesi sono risultati molto pochi.

I dati della revisione sistematica e metanalisi di Liu [Liu 2016] che ha incluso 40 studi (12 RCT e 28 studi osservazionali controllati per un totale di 11.395 pazienti) sono in parte discordanti rispetto alla revisione precedente. In particolare, sono riportate differenze statisticamente significative a favore del criopallone relativamente alla ricomparsa di fibrillazione atriale (OR 0,84, IC95% 0,73-0,96), all'incidenza di complicanze maggiori (ovvero tutte le complicanze esclusa la lesione del nervo frenico) (RR 0,72, IC95% 0,58-0,90) e al tempo di procedura (*standardised mean difference*: -0,39, IC95% da -0,62 a -0,15). L'uso di criopallone risulta associato a una

maggiore incidenza - statisticamente significativa - di complicanze totali (OR 1,38, IC95% 1,12-1,71). Non vengono invece evidenziate differenze statisticamente significative relativamente al numero di vene polmonari isolate durante la procedura, al tempo di fluoroscopia, al tempo di rilascio di energia e al tempo di ablazione.

Poiché i risultati delle due revisioni sistematiche incluse riportavano dati discordanti sul trattamento della fibrillazione atriale parossistica e scarsissime evidenze sull'impiego del criopallone nella FA persistente, è stato eseguito un aggiornamento della letteratura a partire dal 2016 e una sintesi aggiornata con più recenti dati disponibili.

Letteratura primaria

Dalla ricerca in Pubmed sono stati recuperati 189 studi pubblicati a partire dal 2016, di cui solo 6 sono stati inclusi. A questi se ne sono aggiunti 25 provenienti dalle revisioni di Liu [Liu 2016] e Cardoso [Cardoso 2016], che sono stati inclusi sulla base dei criteri definiti nei PICOTS.

Dei 31 studi inclusi in totale, 6 sono RCT e 25 osservazionali controllati. La quasi totalità (29/31) ha confrontato le due tecniche ablative esclusivamente o prevalentemente in pazienti con fibrillazione atriale parossistica; solo 2 studi hanno incluso esclusivamente pazienti con fibrillazione atriale persistente.

L'analisi degli eventi avversi attraverso la consultazione di siti e banche dati specifiche ha evidenziato complessivamente 524 segnalazioni di eventi avversi e/o malfunzionamenti, di cui 519 registrati nella banca dati MAUDE della Food and Drug Administration dal 1° gennaio 2007 al 12 luglio 2017. Le banche dati consultate non specificano il tipo di fibrillazione atriale (parossistica o persistente) trattata.

Valutazione di efficacia, sicurezza e performance tecnica

QR1 - trattamento della fibrillazione atriale parossistica

Sono stati inclusi complessivamente 29 studi (6 RCT e 23 osservazionali controllati per un totale di 11.635 pazienti, di cui 2.208 trattati con CB1, 2.438 con CB2, 750 con CB1 o CB2, 5.914 trattati con catetere a radiofrequenza irrigato e 634 con altri tipi di catetere a radiofrequenza). Ventuno studi su 29 (per un totale di 7.478/11.635 pazienti) hanno specificato tra i loro criteri di inclusione l'arruolamento esclusivamente di soggetti refrattari ad almeno un farmaco anti-aritmico e non precedentemente trattati con tecniche ablative. Il tempo medio/mediano di *follow up* degli studi inclusi è di 16 mesi. Quando possibile, i dati sono stati sintetizzati mediante metanalisi e sono state condotte diverse analisi di sensitività; nei rimanenti casi i dati sono stati sintetizzati con statistiche semplici oppure descritti in modo narrativo.

I risultati complessivi sono presentati in Tabella 1.

Tabella 1. QUESITO DI RICERCA 1. FIBRILLAZIONE ATRIALE PAROSSISTICA

6 RCT e 23 studi osservazionali

EFFICACIA	Assenza di fibrillazione atriale	Metanalisi: 17 studi (4 RCT), no eterogeneità
	Solo CB2	Metanalisi: 3 studi (no RCT), no eterogeneità
	Assenza di tachiaritmie atriali	Metanalisi: 16 studi (5 RCT), no eterogeneità
	Solo CB2	Metanalisi: 7 studi (0 RCT), no eterogeneità
	Ripetizione della procedura ablativa	Metanalisi: 14 studi (4 RCT), presente eterogeneità
	Assunzione di AADs	Sintesi quantitativa: 4 studi (2 RCT)
	Accessi ospedalieri	Sintesi quantitativa: 2 studi osservazionali
	Cardioversione elettrica o farmacologica	Sintesi quantitativa: 1 studio osservazionale
	Mortalità a lungo termine	Sintesi quantitativa: 4 studi (1 RCT)
SICUREZZA	Effusione pericardica	Metanalisi: 10 studi (3 RCT), no eterogeneità
	Tamponamento cardiaco	Metanalisi: 10 studi (2 RCT), no eterogeneità
	Lesione del nervo frenico	Metanalisi: 16 studi (3 RCT), no eterogeneità
	Ictus/TIA	6 studi osservazionali
	Eventi tromboembolici	2 studi osservazionali
	Stenosi della vena polmonare	2 studi osservazionali
	Fistola atrio-esofagea	7 studi osservazionali (nessun caso)
	Morte	2 studi osservazionali (nessun caso)
PERFORMANCE	Tempo di procedura	Metanalisi: 22 studi (5 RCT), presente eterogeneità
TECNICA	Tempo di fluoroscopia	Metanalisi: 19 studi (3 RCT), presente eterogeneità
	Isolamento vene polmonari	Sintesi quantitativa: 16 studi (2 RCT)
	Tempo di permanenza in atrio sinistro	Dato non riportato negli studi
	Tompo di pormanenza in atrio simistro	Date Herr riportate riegii stadi

Legenda tabella

Nessuna differenza tra crioablazione e ablazione con radiofrequenza

Dato a favore della crioablazione

Dato a favore della crioablazione ma presente eterogeneità tra gli studi

Dato a favore dell'ablazione con RF

QR2 - trattamento della fibrillazione atriale persistente

La ricerca bibliografica ha portato al reperimento e inclusione solo di 2 studi osservazionali controllati (59 pazienti trattati con CB1, 50 con CB2, 109 con catetere RF irrigato). Entrambi gli studi hanno arruolato esclusivamente pazienti con fibrillazione atriale persistente, resistenti ad almeno un farmaco antiaritmico e non precedentemente trattati con procedure ablative.

I risultati complessivi sono riportati in Tabella 2.

Tabella 2. QUESITO DI RICERCA 2. FIBRILLAZIONE ATRIALE PERSISTENTE

2 studi osservazionali

EFFICACIA	Assenza di fibrillazione atriale	2 studi osservazionali
	Solo CB2	Dato non riportato negli studi
	Assenza di tachiaritmie atriali	2 studi osservazionali
	Solo CB2	1 solo studio osservazionale
	Ripetizione della procedura ablativa	1 solo studio osservazionale
	Assunzione di AADs	Dato non riportato negli studi
	Accessi ospedalieri	Dato non riportato negli studi
	Cardioversione elettrica o farmacologica	Dato non riportato negli studi
	Mortalità a lungo termine	Dato non riportato negli studi
SICUREZZA	Effusione pericardica	Sintesi narrativa, 2 studi osservazionali
	Tamponamento cardiaco	Sintesi narrativa, 2 studi osservazionali
	Lesione del nervo frenico	2 studi osservazionali
	Ictus/TIA	1 studio osservazionale
	Eventi tromboembolici	Dato non riportato negli studi
	Stenosi della vena polmonare	2 studi osservazionali (nessun caso riportato)
	Fistola atrio-esofagea	2 studi osservazionali (nessun caso riportato)
	Morte	2 studi osservazionali (nessun caso riportato)
PERFORMANCE	Tempo di procedura	2 studi osservazionali
TECNICA	Tempo di fluoroscopia	2 studi osservazionali, risultati discordanti
	· · · · · · · · · · · · · · · · · · ·	
	Isolamento vene polmonari	2 studi osservazionali
	Tempo di permanenza in atrio sinistro	Dato non riportato negli studi

Legenda tabella

Nessuna differenza tra crioablazione e ablazione con radiofrequenza

Dato a favore della crioablazione

Dato a favore della crioablazione ma presente eterogeneità tra gli studi

Dato a favore dell'ablazione con RF

Studi in corso

Gli studi in corso che soddisfano i criteri definiti nei PICOTS sono complessivamente 21 (di cui 8 RCT). Nella maggior parte di questi (16/21) viene studiato l'impiego del criopallone nella fibrillazione atriale parossistica; solo in tre studi viene specificato che il modello di criopallone è Arctic Front (CB2). Uno studio ha l'obiettivo di valutare la sicurezza di un nuovo criocatetere circolare (CoolLoop®). Gli esiti valutati sono i medesimi degli studi già pubblicati.

Discussione

La ricerca della letteratura ha portato all'inclusione di 31 studi (25 osservazionali controllati e 6 RCT), che hanno quasi esclusivamente valutato l'impiego del criopallone nel trattamento della fibrillazione atriale parossistica (QR1, 29/31 studi). Complessivamente solo 8 studi su 31 hanno valutato il CB2.

Gli studi inclusi sono prevalentemente su pazienti resistenti o intolleranti alla terapia antiaritmica e non precedentemente trattati con procedure ablative per fibrillazione atriale.

Relativamente al QR1 ovvero all'isolamento delle vene polmonari con il criopallone in sostituzione del catetere a radiofrequenza per il **trattamento della fibrillazione atriale parossistica** (29 studi su 11.635 pazienti, di cui 5.396 trattati con criopallone e 5.914 con radiofrequenza), la metanalisi ha prodotto i seguenti risultati:

- nessuna differenza statisticamente significativa a favore della crioablazione rispetto a: recidiva di sintomi di fibrillazione atriale (e tale dato viene confermato anche per il CB2) e recidiva di sintomi imputabili a tachiaritmie atriali (e tale dato viene confermato anche per il CB2);
- differenza statisticamente significativa a favore del criopallone per la ripetizione della procedura ablativa (ma è stata rilevata eterogeneità tra gli studi);
- differenza statisticamente significativa a favore del criopallone per l'effusione pericardica e il tamponamento cardiaco;
- differenza statisticamente significativa a favore della radiofrequenza per l'incidenza di lesione del nervo frenico alla dimissione;
- differenza statisticamente significativa a favore del criopallone per il tempo di procedura (ma è presente eterogeneità tra gli studi);
- nessuna differenza statisticamente significativa per il tempo di fluoroscopia e l'isolamento delle vene polmonari.

Riguardo agli accessi ospedalieri, alla necessità di cardioversione elettrica o farmacologica, all'assunzione di farmaci antiaritmici e alla riduzione della mortalità, i pochi dati disponibili non consentono di trarre conclusioni.

Relativamente al QR2 (impiego del criopallone in sostituzione del catetere a radiofrequenza nel **trattamento della fibrillazione atriale persistente**) la letteratura disponibile è molto scarsa. Sono infatti stati reperiti solo due studi osservazionali (218 pazienti in totale), di cui solo uno ha valutato il CB2. Non sono state evidenziate differenze relative alla recidiva di aritmie e alla ripetizione della procedura ablativa. Effetti avversi a livello cardiaco sono stati rilevati solo nei pazienti trattati con radiofreguenza, mentre non sono state evidenziate differenze per

complicanze vascolari, ictus/TIA e lesione del nervo frenico. Entrambi gli studi riportano una differenza statisticamente significativa nel tempo di procedura a favore del criopallone.

I dati di sicurezza estrapolati dall'analisi delle banche dati di dispositivo-vigilanza confermano, sia per QR1 sia per QR2, la tipologia di eventi avversi rilevati anche nell'ambito degli studi clinici.

Tra gli studi in corso, la maggior parte valuta il criopallone nella fibrillazione atriale parossistica (16/21 degli studi inclusi). Risulta attualmente in studio anche un catetere circolare a crioenergia (CoolLoop®).

Conclusioni

Rispetto a quella eseguita con cateteri a radiofrequenza, l'ablazione transcatetere con criopallone

- non sembra essere associata a una maggiore efficacia;
- è associata in modo significativo a un minore rischio di effusione pericardica e tamponamento cardiaco ma a un maggiore rischio di lesione del nervo frenico rilevato alla dimissione;
- presenta un tempo di procedura inferiore.

La maggior parte degli studi identificati ha valutato il CB1 nel trattamento della fibrillazione atriale parossistica.

Al momento, i costi del criopallone risultano superiori a quelli dei cateteri a radiofrequenza lineari.

RAZIONALE DELLA TECNOLOGIA

Il razionale della tecnologia è stato definito insieme ai membri del comitato tecnico-scientifico della Commissione regionale Dispositivi medici e a un gruppo regionale di clinici esperti nel trattamento della fibrillazione atriale.

L'utilizzo della crioablazione con pallone (*cryoballon ablation*) per il trattamento della fibrillazione atriale ha lo scopo di indurre l'isolamento delle vene polmonari (*pulmonary vein isolation*, PVI) producendo lesioni circonferenziali mediante crioenergia.

Rispetto alla tecnica ablativa con radiofrequenza, l'ablazione con criopallone offrirebbe vantaggi in termini di:

- efficacia e sicurezza perché permette di individuare con maggiore precisione la zona da ablare.
 Mediante la crioablazione con pallone si può infatti produrre una lesione reversibile (criomappaggio) utilizzando una temperatura superiore a quella richiesta per una lesione permanente ma sufficiente per inibire temporaneamente la conduzione elettrica nell'atrio sinistro;
- ridotto tempo di permanenza in atrio sinistro con conseguente riduzione delle complicanze;
- ridotto tempo di procedura con aumento dell'efficienza;
- relativa facilità della procedura e conseguente accorciamento della curva di apprendimento.

QUESITI DI RICERCA

Insieme ai membri del comitato tecnico-scientifico della Commissione regionale Dispositivi medici e ai clinici regionali sono stati definiti due quesiti di ricerca ovvero:

quesito di ricerca 1

In pazienti con **fibrillazione atriale parossistica**, l'ablazione delle vene polmonari mediante criopallone in sostituzione del catetere a radiofrequenza migliora sicurezza, efficacia e *performance* tecnica della procedura ablativa?

quesito di ricerca 2

In pazienti con **fibrillazione atriale persistente**, l'ablazione delle vene polmonari mediante criopallone in sostituzione del catetere a radiofrequenza migliora sicurezza, efficacia e *performance* tecnica della procedura ablativa?

Per ciascun quesito di ricerca sono stati definiti a priori i PICOTS (popolazione, intervento, comparatore, esiti da valutare [outcomes], tempo di follow up, disegno di studio [setting/study design]) che hanno guidato la ricerca e la selezione della letteratura disponibile:

	Quesito di ricerca 1 - QR 1	Quesito di ricerca 2 - QR 2
Popolazione	pazienti con fibrillazione atriale parossistica candidati ad isolamento delle vene polmonari (pulmonary vein insolation) mediante ablazione e non precedentemente trattati con procedure ablative transcatetere o chirurgiche	pazienti con fibrillazione atriale persistente candidati ad isolamento delle vene polmonari (<i>pulmonary vein insolation</i>) mediante trattamento ablativo, non precedentemente trattati con procedure ablative transcatetere o chirurgiche
Intervento	isolamento delle vene polmonari (PVI) mediar	nte ablazione con criopallone
Comparatore/i	ablazione transcatetere con radiofrequenza	
Outcomes	1	cione atriale co, ad es. mortalità cone del nervo frenico, effusione pericardica, a vena polmonare, ictus/attacco ischemico
Tempo di follow up	follow up: • 12 mesi Per gli esiti di efficacia non sono stati consi periodo di blanking di 90 giorni post-intervent aritmie legate all'infiammazione indotta dalla	to (tempo standard per la scomparsa delle
Setting/ disegno di studio	health technology assessment e revision minimi di validità interna [Maltoni 2017] - studi primari: sono stati inclusi sia RCTs sia di pazienti maggiore di 10; limitatamente a	metodologia sistematica ovvero documenti di i sistematiche che soddisfano specifici <i>criteri</i> studi osservazionali controllati con un numero agli esiti di sicurezza sono inoltre state valutate verso la consultazione di diversi database

DESCRIZIONE E CARATTERISTICHE TECNICHE DELLA TECNOLOGIA

L'ablazione transcatetere viene proposta come metodica minimamente invasiva per il trattamento della fibrillazione atriale [Stabile 2006].

La procedura consiste nell'inserimento di cateteri a livello cardiaco per individuare e successivamente isolare i foci aritmogeni responsabili della produzione o del mantenimento di battiti cardiaci anomali o irregolari. Poiché i trigger aritmogeni sono solitamente localizzati all'interno di una o più vene polmonari, la procedura ablativa più comunemente utilizzata per trattare la fibrillazione atriale consiste nell'isolamento delle vene polmonari (*pulmonary vein isolation*, PVI); più raramente si procede all'ablazione anche in altre zone dell'atrio [Passman 2017, Skelly 2015]. Affinché la procedura sia efficace, è necessario ottenere un blocco elettrico bidirezionale di tutte e quattro le vene polmonari [Passman 2017].

La procedura viene eseguita in anestesia totale o locale. Il catetere è introdotto per via percutanea attraverso una vena (solitamente quella femorale) e guidato fino alla camera atriale sotto controllo fluoroscopico. Attraverso la perforazione del setto inter-atriale mediante puntura transettale, il catetere è condotto dall'atrio destro a quello sinistro. Una volta individuati, i foci aritmogeni vengono distrutti o isolati in modo irreversibile mediante l'erogazione di energia attraverso un catetere ablativo. Prima e durante la procedura vengono utilizzate tecniche di *imaging* cardiaco quali risonanza magnetica, tomografia computerizzata e ecocardiografia transtoracica, transesofagea e intracardiaca. La mappatura elettroanatomica viene spesso utilizzata durante la procedura per individuare i trigger responsabili della fibrillazione atriale, confermare l'efficacia dell'ablazione e caratterizzare il suo impatto complessivo sull'atrio sinistro [Passman 2017, Skelly 2015].

La fonte di energia utilizzata per l'isolamento delle vene polmonari può essere a radiofrequenza, crioenergia, laser, microonde o ultrasuoni [Passman 2017, Skelly 2015]. In Italia sono attualmente in commercio sistemi ablativi che utilizzano energia a radiofrequenza, crioenergia o energia laser.

Il metodo ablativo transcatetere più comunemente utilizzato è l'ablazione a radiofrequenza [Passman 2017] che utilizza il calore per isolare i foci aritmogeni. In questo caso, il catetere ablatore è il mezzo di conduzione di corrente elettrica a radiofrequenza: la punta del catetere si riscalda e brucia il tessuto miocardico responsabile dell'aritmia ripristinando il corretto ritmo sinusale. In commercio sono presenti diverse tipologie di cateteri ablatori a radiofrequenza [Liu 2016, schede tecniche dei produttori¹] che si distinguono in cateteri:

- mono-elettrodo o multi-elettrodo (MTCA)
- lineari e circolari

http://www.salute.gov.it/portale/temi/p2_4.jsp?area=dispositivi-medici (ultimo accesso ottobre 2017)
Accesso limitato a utenti con credenziali

- irrigati e non
- a contact force e non
- eroganti radiofrequenza unipolare e bipolare.

Oltre a cateteri esclusivamente ablativi ne esistono di tipo misto, diagnostico/ablatori; oltre all'erogazione di corrente, questi cateteri svolgono anche la funzione di *mapping* ovvero realizzano la mappatura elettrofisiologica del tessuto cardiaco.

L'ablazione con crioenergia può essere effettuata mediante cateteri lineari, circolari o a palloncino (*cryoballoon*). Attualmente, nella banca dati repertorio del Ministero della salute² risultano iscritti cateteri lineari quali Freezor³ prodotto da Medtronic, Cryolce⁴ e CryoForm⁵ prodotti da Atricure, cateteri a palloncino prodotti esclusivamente da Medtronic (Arctic Front System®). Questi ultimi sono disponibili in tre modelli diversi: Arctic Front® (criopallone di 1ª generazione), Arctic Front Advance® (2ª generazione) e Arctic Front Advance ST® (3ª generazione) (*Appendice 1*). La destinazione d'uso di Arctic Front® e Arctic Front Advance® è il trattamento della fibrillazione atriale parossistica; stessa indicazione d'uso, limitatamente al trattamento dei pazienti farmaco-resistenti con fibrillazione atriale sintomatica e ricorrente, è stata rilasciata dalla Food and Drug Administration statunitense per l'Arctic Front Advance ST® che, in Europa, ha ottenuto invece una destinazione d'uso molto più generica di "trattamento della fibrillazione atriale". Arctic Front Advance ST® si differenzia rispetto alle generazioni precedenti per una migliore manovrabilità e una punta del 40% più corta che permette la visualizzazione in tempo reale dell'avvenuta ablazione.⁶ Tutti i criopalloni sono disponibili in due diametri, di 23 e 28 mm.

Il sistema ablativo con criopallone per l'isolamento delle vene polmonari è composto da un criocatetere a palloncino flessibile su filo guida, da una serie di introduttori FlexCath®, da una console per crioablazione e da componenti correlati (Appendice 2). Il catetere viene introdotto nel sistema vascolare mediante tecniche convenzionali minimamente invasive (solitamente attraverso la vena femorale). Sul catetere a palloncino e sull'introduttore FlexCath® sono presenti marker radiopachi che permettono la verifica del loro corretto posizionamento tramite fluoroscopia. Una volta raggiunto l'antro delle vene polmonari, il criopallone viene espanso mediante insufflazione di aria, fino ad una perfetta adesione con le pareti. Il refrigerante viene

http://www.dati.salute.gov.it/dati/dettaglioDataset.jsp?menu=dati&idPag=1 (ultimo accesso ottobre 2017)

Disponibile in diversi modelli, tutti monouso flessibili e orientabili, specificamente disegnati per la crioablazione focale del tessuto cardiaco e con destinazione d'uso "trattamento delle aritmie cardiache mediante crioablazione".

4 Autorizzato per il "trattamento chirurgico endocavitario della fibrillazione atriale mediante crioablazione".

Autorizzato per il "trattamento criochirurgico delle aritmie cardiache mediante il congelamento dei tessuti da trattare, creando una risposta infiammatoria (crionecrosi) che blocca il percorso di conduzione elettrica".

6 Comunicato stampa sul sito del produttore Medtronic http://newsroom.medtronic.com/phoenix.zhtml?c=251324&p=irol-newsArticle&ID=2047016 (ultimo accesso ottobre 2017) erogato dalla *console* al palloncino che, in tal modo, raggiunge temperature di crioablazione. Una termocoppia posizionata all'interno del palloncino fornisce la possibilità di leggere la temperatura.

Prima di procedere con l'isolamento irreversibile del tessuto aritmogeno, è possibile isolare in modo reversibile il sospetto focus aritmogeno. Il test, definito criomappaggio, consente di sondare l'efficacia della crioablazione in un determinato punto e di capire se a un danneggiamento del tessuto corrisponde un'interruzione del sistema di conduzione. Durante il criomappaggio si eroga refrigerante a circa -30°C, temperatura che non danneggia il tessuto in modo irreversibile ma che permette di osservare la scomparsa dell'aritmia, l'impossibilità di indurla nuovamente e/o la scomparsa della conduzione sulla via accessoria. Terminato il test, si procede con la vera e propria crioablazione che solitamene ha una durata predefinita di 240 secondi. L'erogazione di refrigerante a temperature più basse di quelle del criomappaggio determina la cicatrizzazione circonferenziale della vena a contatto con il pallone. Al termine dell'erogazione, il pallone si richiude automaticamente e può essere posizionato su un'altra vena oppure estratto.

Solitamente, durante la procedura viene effettuato anche il monitoraggio del nervo frenico onde evitarne la paralisi permanente; tale monitoraggio avviene con un catetere quadripolare posizionato nella vena cava superiore [Boveda 2016].

La crioablazione cardiaca mediante criopallone è controindicata:

- nel ventricolo, a causa del pericolo di intrappolamento del catetere nelle corde tendinee;
- nei pazienti affetti da infezioni sistemiche attive;
- in condizioni in cui la manipolazione del catetere all'interno del cuore potrebbe costituire un pericolo (ad esempio, in caso di trombosi murale intracardiaca);
- nei pazienti affetti da crioglobulinemia;
- nei pazienti con uno o più stent venosi polmonari.

Dalla Banca dati Flusso consumi [Flusso Consumi 2016] risulta che il costo medio di Arctic Front® (codice repertorio: 394952), utilizzato solo in Toscana, risulta essere di euro 4.086 (*range*: € 3.120-4.270) mentre quello di Arctic Front Advance® (codice repertorio: 533659), utilizzato in 14 regioni, risulta di euro 3.747 (*range*: € 2.899-4.624). Dalle banche dati a disposizione non risultano consumi relativi ad Arctic Front Advance-ST®.

Per quel che riguarda i costi dei cateteri per ablazione a radiofrequenza, dalla Banca dati ministeriale Flusso consumi [Flusso Consumi 2015-2016] nelle CND "C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni" e "C020399 - dispositivi per ablazione di foci aritmogeni - altri" risultano movimentati 128 codici repertorio (*Appendice 2bis*).

Per i 4 codici repertorio dei cateteri a radiofrequenza tridimensionali il costo medio va da un minimo di euro 2.928 al massimo di euro 4.575; per i 124 codici repertorio relativi a cateteri per ablazione lineari il costo medio è compreso in un *range* di € 366-2.883. Tale variabilità può dipendere dalla conformazione e dal numero di elettrodi che compongono il catetere, dalla curvatura e dal grado di flessibilità della punta, dall'eventuale co-presenza di sistema di mappaggio e/o di stimolazione e/o di irrigazione e, infine, dalla possibilità di guidare correttamente l'ablazione tramite un sensore *contact force* e/o di temperatura.

In Emilia-Romagna per l'anno 2016 dalla banca dati Dispositivi medici (Dime) non risultano consumi di cateteri per ablazione tridimensionale e risultano movimentati 41 dei 124 codici di repertorio relativi ai cateteri per ablazione lineare, con un costo medio in un *range* di € 468-1.549 (*Appendice 2bis*). Inoltre la media pesata del costo tenendo conto della frequenza di utilizzo risulta di circa 950 euro.

PROBLEMA CLINICO E ATTUALE UTILIZZO DELLA TECNOLOGIA

Condizione clinica oggetto della valutazione

La fibrillazione atriale è il tipo di aritmia cardiaca più comune; può manifestarsi da sola o associata a altre forme di aritmie quali il flutter o la tachicardia atriali [Kumar 2016]. È una condizione che si verifica quando alterazioni elettrofisiologiche e/o strutturali dovute a specifici meccanismi patofisiologici modificano il tessuto atriale promuovendo la formazione e/o la propagazione anomala dell'impulso elettrico [January 2017, Passman 2017]. L'attivazione atriale scoordinata esita in un deterioramento della funzionalità meccanica a livello dell'atrio che può portare a una diminuzione dell'eiezione cardiaca e alla formazione di trombi [Passman 2017, Skelly 2015]. A lungo termine, la fibrillazione atriale è associata a un aumentato rischio di scompenso cardiaco, ospedalizzazione, eventi tromboembolici (compresi ictus e infarto miocardico) e morte [Ganz 2016, Kumar 2016, Skelly 2015].

Sulla base della durata degli episodi la fibrillazione atriale viene classificata in [January 2014, Kirchhof 2016, Kumar 2016, Skelly 2015]:

- parossistica (ovvero autolimitante o intermittente):
 caratterizzata da episodi che si interrompono spontaneamente o con intervento medico entro
 7 giorni dall'insorgenza; gli episodi possono ripresentarsi con frequenza variabile;
- persistente:

fibrillazione atriale che non si risolve spontaneamente entro 7 giorni; per ristabilire il ritmo sinusale è richiesta la cardioversione farmacologica o elettrica;

- persistente di lunga data:
 fibrillazione atriale persistente che dura da più di 12 mesi;
- permanente:

fibrillazione atriale persistente per la quale il paziente e il medico hanno deciso congiuntamente di non continuare la terapia antiaritmica (più frequente in pazienti anziani con danni strutturali a livello cardiaco).

Si parla inoltre di fibrillazione atriale isolata quando la fibrillazione atriale (parossistica, persistente o permanente) non è associata a danni strutturali a livello cardiaco; è un termine solitamente utilizzato quando si fa riferimento a pazienti di età inferiore ai 60 anni a basso rischio di complicanza (con valore di CHADS₂⁷ o CHA₂DS₂-Vasc pari a "0") [Kumar 2016]. Si parla di episodi ricorrenti quando questi hanno una durata superiore ai 30 secondi; studi di monitoraggio cardiaco continuo hanno mostrato che il 90% dei pazienti ha episodi ricorrenti di fibrillazione atriale [Kumar 2016].

⁷ Lo score CHADS₂ stima il rischio di ictus definito come segni o sintomi focali neurologici che persistono per più di 24 ore e che non possono essere spiegati mediante emorragia, trauma o altri fattori o embolizzazione periferica. Gli attacchi ischemici transitori non sono inclusi.

La fibrillazione atriale può essere asintomatica o sintomatica. In quest'ultimo caso i sintomi caratteristici sono affanno, affaticamento difficile da trattare e sincope, che possono impattare in modo significativo sulla qualità di vita dei pazienti [Skelly 2015]. Studi di monitoraggio cardiaco continuo hanno mostrato che fino al 90% dei pazienti con episodi ricorrenti è asintomatico e non riferisce sintomi (il 17% dei pazienti che presenta episodi che durano più di 48 ore non se ne accorge) [Kumar 2016]. D'altra parte, uno studio ha mostrato come il 40% dei pazienti che riportano sintomi simili a quelli della fibrillazione atriale in realtà non abbia episodi di fibrillazione [Israel 2004].

Il rischio di insorgenza di fibrillazione atriale è aumentato da numerosi fattori quali età avanzata, sesso maschile, obesità, fumo, ipertensione, ipertiroidismo, diabete, infarto miocardico, chirurgia a livello cardiaco o scompenso cardiaco [Skelly 2015].

Si è stimato che, nel 2010, a livello mondiale le donne e gli uomini con fibrillazione atriale fossero rispettivamente 12,6 e 20,9 milioni, con tassi di incidenza e prevalenza più elevati nei paesi economicamente più sviluppati. In Europa entro il 2030 sono stimati 14-17 milioni di pazienti con fibrillazione atriale, con 120.000-215.000 nuovi pazienti ogni anno. Le stime suggeriscono una prevalenza di fibrillazione atriale di circa il 3% negli adulti di età maggiore a 20 anni con maggiore prevalenza nelle persone anziane e nei pazienti con condizioni quali ipertensione, insufficienza cardiaca, malattia coronarica, obesità, diabete mellito o malattia renale cronica. L'aumento della prevalenza di fibrillazione atriale può essere attribuito anche alla migliore rilevazione di FA silente oltre che all'età crescente e alle condizioni predisponenti alla patologia [Kirchhof 2016].

Negli Stati Uniti Stati Uniti la fibrillazione atriale interessa circa 2,3 milioni di americani e entro il 2050 è prevista una crescita della sua prevalenza fino a 5,6-12,1 milioni [Skelly 2015]. In Italia un recente studio indica che la prevalenza della fibrillazione atriale in soggetti di età superiore ai 15 anni si aggira intorno al 2%; la prevalenza è maggiore nel sesso maschile (rapporto di frequenza • 1,2 in ogni gruppo di età) e aumenta con l'avanzare dell'età: 0,16% nei pazienti di età compresa tra 16 e 50 anni, 9% degli anziani da 76 a 85 anni e 10,7% per quelli con età • 85 anni [Zoni-Berisso 2013]. Si stima inoltre che il 55,1% dei pazienti con fibrillazione atriale sia affetto dalla forma permanente, il 24,3% da quella persistente e il 20,2% da quella parossistica [Zoni-Berisso 2013].

Trattamento standard della condizione clinica

Il trattamento della fibrillazione atriale consiste in controllo della frequenza e del ritmo cardiaci, prevenzione di eventi tromboembolici e delle condizioni predisponenti e/o associate [Skelly 2015]. Il trattamento iniziale spesso prevede la somministrazione di farmaci per il controllo della frequenza ventricolare quali betabloccanti o antagonisti non diidropiridinici dei canali del calcio.

Tuttavia, il controllo della frequenza ventricolare può non essere sufficiente a controllare i sintomi. In questi casi, o quando deve essere impostata una gestione della fibrillazione atriale a lungo termine, si ricorre a strategie di controllo del ritmo sinusale mediante terapia farmacologica o isolamento delle vene polmonari con tecniche ablative [Skelly 2016].

Il controllo del ritmo sinusale viene solitamente perseguito nei pazienti sintomatici; può essere tuttavia indicato anche in pazienti asintomatici con una rapida risposta ventricolare alla fibrillazione atriale che non tollerano o non rispondono ai farmaci per il controllo della frequenza cardiaca [Skelly 2015].

Controllo del ritmo sinusale con terapia farmacologica

La terapia di prima scelta è solitamente quella farmacologica e la selezione del farmaco antiaritmico dipende principalmente dalla presenza o meno di danno strutturale cardiaco [January 2014] e da considerazioni sul profilo di sicurezza del principio attivo [Kirchhof 2016]. I farmaci antiaritmici hanno un'efficacia modesta [Kirchof 2016], possono indurre a loro volta aritmie e presentano numerosi effetti avversi extracardiaci. La potenziale interazione con gli anticoagulanti richiede un monitoraggio attivo continuo [Skelly 2015]. Vengono inoltre suggerite somministrazioni per brevi periodi di tempo (ad esempio 4 settimane) [Kirchhof 2016].

Controllo del ritmo sinusale con tecniche ablative

L'ablazione con catetere per il trattamento della fibrillazione atriale viene effettuata sempre più frequentemente in pazienti sintomatici in alternativa al trattamento farmacologico o quando quest'ultimo non risulta efficace.

Le linee guida prodotte dall'American Heart Association, dall'American College of Cardiology e dalla Heart Rythm Society [January 2014] indicano l'ablazione mediante catetere come un'opzione

- utile per pazienti con fibrillazione atriale parossistica sintomatica intolleranti o refrattari ad almeno un farmaco antiaritmico (raccomandazione di classe I, livello di evidenza A) ma solo ragionevole per quelli con FA parossistica sintomatica ricorrente prima della terapia farmacologica (raccomandazione di classe IIa, livello di evidenza B);
- ragionevole per pazienti con fibrillazione atriale sintomatica persistente (raccomandazione di classe IIa, livello di evidenza A) o da considerarsi per quelli con FA persistente di lunga data (>12 mesi) (raccomandazione di classe IIb, livello di evidenza B), entrambi intolleranti o refrattari ad almeno un farmaco antiaritmico, e da considerarsi per pazienti con fibrillazione atriale persistente prima dei farmaci antiaritmici (raccomandazione di classe IIb, livello di evidenza C);
- da non perseguire in pazienti che non possono essere sottoposti a terapia anticoagulante durante e dopo la procedura (*raccomandazione di classe III, livello di evidenza C*).

Le linee guida della European Society of Cardiology [Kirchoff 2016] indicano che l'ablazione con catetere dovrebbe essere considerata come opzione per il trattamento della fibrillazione atriale, in presenza o meno di patologia strutturale a livello cardiaco, in pazienti che richiedono un controllo del ritmo sinusale a lungo termine (raccomandazione IIa, livello delle evidenze B) [Kirchhof 2016]. Le medesime linee guida riconoscono tuttavia che la maggior parte degli studi disponibili (pochi RCT e numerosi studi osservazionali controllati) hanno incluso pazienti con fibrillazione atriale parossistica refrattaria alla terapia farmacologica antiaritmica, che l'ablazione con catetere come trattamento di prima linea nella fibrillazione atriale parossistica effettuata in centri esperti migliora solo in modo modesto il controllo del ritmo sinusale rispetto ai farmaci

antiaritmici e che le evidenze relative all'ablazione nella fibrillazione atriale persistente e permanente sono molto scarse.

Le linee guida non esprimono raccomandazioni specifiche relative all'ablazione mediante crioenergia o radiofrequenza.

Stima del numero di pazienti destinatari della tecnologia

Per stimare la popolazione candidabile al trattamento ablativo con criopallone in Emilia-Romagna è stata utilizzata la banca dati delle schede di dimissione ospedaliera (SDO) relativa all'anno 2016, selezionando i pazienti:

- sottoposti a procedura di ablazione (codice intervento principale ICD9-CM 37.34: Asportazione o distruzione di altri tessuti o lesione del cuore, altro approccio);
- con diagnosi principale di fibrillazione atriale (codice patologia principale ICD9-CM 427.31: Fibrillazione atriale);
- senza precedenti ricoveri per ictus e attacco ischemico transitorio (TIA, [Sacco 2013]) nei due anni precedenti all'anno di riferimento (2016) del ricovero indice;
- trattati in strutture pubbliche (Aziende USL e Aziende ospedaliere) del Servizio sanitario regionale dell'Emilia-Romagna.

Nel 2016 in Emilia-Romagna 269 pazienti risultano essere stati trattati con ablazione transcatetere per fibrillazione atriale, con età media 61,4 anni (\pm 12,5 anni).

Nella banca dati SDO i codici ICD9-CM non prevedono una specifica diagnosi per la fibrillazione atriale parossistica e persistente e quindi la stima del numero di pazienti sottoposti ad ablazione stratificati per tipo di fibrillazione (fibrillazione atriale parossistica e persistente) è stata fatta utilizzando i dati del Database clinico di aritmologia interventistica (RERAI) relativo al biennio 2008-2009⁸ e ipotizzando che la proporzione di ablazioni per le diverse indicazioni (fibrillazione atriale parossistica, persistente e permanente) si sia mantenuta costante negli anni.

Dal Database clinico RERAI risulta che, rispetto al totale dei pazienti sottoposti ad ablazione con indicazione di fibrillazione atriale, la proporzione di pazienti con indicazione di fibrillazione atriale parossistica, persistente e permanente è rispettivamente del 56, 22 e 22%.

Sulla base degli elementi sopra riportati, nel 2016 per l'Emilia-Romagna il numero di pazienti eleggibili all'ablazione transcatere in generale e con criopallone in particolare è rispettivamente di 160 per la fibrillazione atriale parossistica (di cui 144 casi non trattati nei 3 anni precedenti con ablazione per fibrillazione atriale) e di 60 per la FA persistente (di cui 57 casi non trattati nei 3 anni precedenti con ablazione per fibrillazione atriale).

http://assr.regione.emilia-romagna.it/it/servizi/Indice_A...Z/D/database-clinici/rerai/documentipubblicazioni (ultimo accesso ottobre 2017)

Attuale diffusione della tecnologia

Dalla banca dati Dispositivi medici del Ministero della salute risultano registrati in Italia un solo produttore di criopallone (Medtronic Cryocath LP) e cinque prodotti, di cui uno non più in commercio (117399/R) (*Tabella 3* e *Appendice 1*).9

I consumi dei criopalloni riferiti al 2016, stratificati per codice di repertorio e derivati dal Flusso consumi dei dispositivi medici messo a disposizione dal Ministero della salute, sono riportati in Tabella 4.

Tabella 3. Criopalloni disponibili in Italia

Codice Repertorio DM	Codice attribuito dal fabbricante	Nome commerciale e modello	CND	Classe CE	Data prima pubblicazione in Repertorio DM	Data fine immissione in commercio	Fabbricante e mandatario
117399/R	2AF281; 2AF231	Arctic Front	C020302 - elettrocateteri	111	19/2/2009	23/3/2011	fabbricante: Cryocath
533659/R	2AF233; 2AF283	Arctic Front Advance	per ablazione con crioenergia di foci		19/5/2012		Technologies Inc. (California) mandatario:
394952/R	2AF281; 2AF231	Arctic Front	aritmogeni		24/3/2011		Medtronic B.V. (The
1286021/R	2AFAST23	Arctic Front Advance St			14/4/2015		Netherlands)
1286032/R	2AFAST28	Arctic Front Advance St			14/4/2015		

Fonte: banca dati Dispositivi medici del Ministero della salute.9

http://www.salute.gov.it/interrogazioneDispositivi/RicercaDispositiviServlet?action= ACTION MASCHERA (ultimo accesso novembre 2017)

Tabella 4. Consumi dei palloni per ablazione con crioenergia, anno 2016

Regione	Nome commerciale (codice repertorio)					
	Arctic Front®	Arctic Front Advance®	Arctic Front Advance ST®			
	(394952) (N)	(533659) (N)	1286021 (N)	1286032 (N)		
Toscana	88	42		2		
Piemonte		29	2			
Lombardia		141				
PA Bolzano		41				
PA Trento		24				
Veneto		63				
Friuli Venezia Giulia		5				
Liguria		13				
Emilia-Romagna		6				
Umbria		10				
Marche		25				
Lazio		2				
Campania		14				
Sicilia		32				
Totale	88	447	2	2		

Fonte: Flusso consumi dei Dispositivi medici messo a disposizione dal Ministero della salute [Flusso consumi 2016].

VALUTAZIONE DEGLI ESITI DI EFFICACIA, SICUREZZA E *PERFORMANCE* TECNICA

Risultati della ricerca della letteratura secondaria

La ricerca della letteratura secondaria secondo la strategia riportata in Appendice 3 ha portato al reperimento di 82 documenti (62 referenze da banche dati e 20 da siti di società scientifiche, agenzie governative di valutazione delle tecnologie o assicurazioni sanitarie, *Figura 1, Appendice 3*).

Dalla lettura del *full text* sono stati considerati pertinenti complessivamente 13 valutazioni e documenti di *policy* prodotti da enti governativi o assicurazioni sanitarie anglosassoni¹⁰ e 12 revisioni sistematiche della letteratura.¹¹

Valutazioni HTA e documenti di policy

Tutti i documenti si sono occupati genericamente di fibrillazione atriale, senza specificare se parossistica o persistente. Solo 2 su 13 documenti recuperati da siti hanno valutato non solo la prima ma anche la seconda generazione di criopallone [HAS 2016, Health Net 2016] e sono stati pertanto inclusi nella valutazione.

Il rapporto della Haute Autorité de Santé [HAS 2016] (aggiornamento di una pubblicazione del 2006) ha valutato efficacia e sicurezza della crioablazione nella gestione delle tachicardie mediante ablazione endocavitaria, in confronto alla radiofrequenza. Ha incluso 23 documenti di cui 10 linee guida, 4 report HTA e 9 metaanalisi. Per la fibrillazione atriale, il flutter atriale tipico e la tachicardia sopraventricolare da rientro nodale, i risultati complessivi mostrano che la crioablazione ha un profilo di sicurezza e di efficacia paragonabile a quello della radiofrequenza. In specifico, nella fibrillazione atriale non risultano differenze significative tra le due tecniche relativamente al tasso di ricorrenza di FA, di successo procedurale e a tempo di fluoroscopia. Per quanto riguarda le complicanze, la crioablazione - rispetto alla radiofrequenza - ha riportato numerosi casi di paralisi del nervo frenico (a volte anche irreversibile). HAS conclude che, nonostante un follow up breve (da uno a due anni) e l'eterogeneità degli studi nelle metanalisi, la crioablazione può essere considerata un'alternativa alla RF nelle indicazioni sopracitate (fibrillazione atriale, flutter atriale tipico e tachicardia sopraventricolare da rientro nodale). La Haute Autorité de Santé sottolinea inoltre che la crioablazione deve essere praticata da aritmologi

AETNA 2017, ASERNIPS 2004, BCBS Hawaii 2012, BCBS Idaho 2014, BCBS of Kansas 2015, BCBS Western New York 2016, Benguria-Arrate 2014, Capital Blue 2016, González 2015, Health Net 2016, HealthPACT 2014, NICE 2005, NICE 2012, Ontario 2006, Rodgers 2008, Skelly 2015, Themistoklatis 2011, Van Brabandt 2012, Washington 2013.

Andrade 2011, Buiatti 2017, Cardoso 2016, Chen 2017a, Chen 2017b, Cheng 2015, Garg 2016, He 2016, Jiang 2017, Liu 2016, Voskoboninik 2017, Xu 2014.

che hanno già esperienza con le tecniche a radiofrequenza in considerazione della complessità e potenziale pericolosità della tecnica.

Il documento prodotto da Health Net [Health Net 2016] è una medical policy che prende in considerazione le evidenze scientifiche pubblicate da maggio 2010 a luglio 2016 sulle tecniche ablative transcatetere per la fibrillazione atriale. Sulla base dell'analisi delle evidenze, Health Net conclude che l'isolamento delle vene polmonari con crioablazione viene considerata un'alternativa all'ablazione punto a punto con radiofrequenza per il trattamento della fibrillazione atriale sintomatica refrattaria alla terapia farmacologica. Viene specificato che le evidenze a supporto dell'ablazione transcatetere si riferiscono soprattutto a pazienti giovani con fibrillazione atriale parossistica, con malattia strutturale cardiaca nulla o limitata, e trattati in centri con grande esperienza nelle tecniche ablative. L'isolamento delle vene polmonari con crioablazione può essere considerata un'alternativa all'ablazione con radiofreguenza nei pazienti con fibrillazione atriale persistente all'esame ECG, intolleranti o resistenti al trattamento farmacologico. Tuttavia si specifica che le evidenze a supporto dell'efficacia comparativa della crioablazione verso la radiofreguenza per guesta indicazione sono limitate e parziali. Il re-intervento per il trattamento della fibrillazione parossistica in pazienti già sottoposti a precedente ablazione con radiofrequenza viene descritto come possibile ma, come in precedenza, viene sottolineato che le evidenze che supportano l'efficacia comparativa della crioablazione verso la radiofreguenza sono limitate e parziali.12

Revisioni sistematiche

Dall'analisi delle dodici revisioni sistematiche della letteratura recuperate dalla ricerca in banche dati e considerate pertinenti,¹³ ne sono state escluse complessivamente otto perché valutavano esclusivamente la prima (CB1) [Andrade 2011, Xu 2014] o la seconda (CB2) generazione di criopallone [He 2016, Jiang 2017], oppure perché presentavano criteri di inclusione degli studi diversi da quelli definiti nei PICOTS dei due quesiti di ricerca.¹⁴

_

Health Net considera l'ablazione transcatetere come "medicalmente necessaria" solo in pazienti con fibrillazione atriale parossistica sintomatica refrattari o intolleranti ad almeno un farmaco antiaritmico di classe I o III quando si desidera perseguire una strategia terapeutica per il controllo del ritmo, pazienti selezionati con fibrillazione atriale persistente e sintomatica e refrattari o intolleranti ad almeno un farmaco antiaritmico di classe I o III e come trattamento iniziale in pazienti con fibrillazione atriale parossistica ricorrente prima della terapia farmacologica, una volta soppesati attentamente i rischi e i benefici. L'ablazione transcatetere può considerarsi "medicalmente necessaria" in individui selezionati con fibrillazione atriale persistente di lunga durata resistente o intollerante ad almeno un farmaco antiaritmico di classe I o II o con fibrillazione atriale persistente sintomatica prima della terapia farmacologica. L'ablazione transcatetere deve essere evitata in pazienti che durante e dopo la procedura non possono assumere anticoagulanti.

Andrade 2011, Buiatti 2017, Cardoso 2016, Chen 2017a, Chen 2017b, Cheng 2015, Garg 2016, He, 2016, Jiang 2017, Liu 2016, Voskoboninik 2017, Xu 2014

¹⁴ Buiatti 2017, Chen 2017a, Cheng 2015, Voskoboinik 2017

Le rimanenti quattro revisioni sistematiche¹⁵ sono state considerate pertinenti in quanto presentavano quesiti di ricerca, criteri di inclusione e esclusione degli studi e tipologia di esiti valutati sovrapponibili a quelli definiti nei PICOTS della presente valutazione. Tuttavia, solo le revisioni di Cardoso [Cardoso 2016] e Liu [Liu 2016] hanno valutato l'impiego della crioablazione in entrambe le indicazioni (fibrillazione atriale parossistica e persistente) e sono pertanto state incluse nell'analisi di efficacia, sicurezza e *performance* tecnica. Entrambe le revisioni sistematiche sono risultate di qualità elevata all'analisi con la *checklist* AMSTAR (*Appendice 4*).

La revisione sistematica di Cardoso [Cardoso 2016] ha confrontato efficacia e sicurezza dell'ablazione mediante isolamento delle vene polmonari con criopallone e con cateteri irrigati a radiofreguenza in pazienti con fibrillazione atriale. Ha incluso studi randomizzati e controllati e osservazionali controllati, pubblicati in inglese sia in full text che sotto forma di abstract, fino ad aprile 2016, che hanno confrontato l'isolamento delle vene polmonari mediante ablazione con criopallone (di prima e seconda generazione) verso il catetere a radiofrequenza irrigato in pazienti con fibrillazione atriale (parossistica o persistente) non precedentemente trattati con ablazione; tra i criteri di inclusione è stato considerato anche un follow up uguale o maggiore di 12 mesi. I 22 studi inclusi (5 RCT16 e 17 studi di osservazionali controllati, 17 18 in full text e 4 sotto forma di abstract¹⁸) hanno arruolato complessivamente 8.668 pazienti (3.706 trattati con criopallone e 4.962 con ablazione mediante radiofreguenza). Solo 3 studi su 22 hanno incluso anche pazienti con fibrillazione atriale persistente. Otto hanno valutato solo il pallone di prima generazione, 6/22 il criopallone sia di prima che di seconda generazione e 6/22 solo quello di seconda generazione; gli autori di 2 studi disponibili solo sotto forma di abstract non specificano il tipo di criopallone utilizzato. L'assenza di tachiaritmie atriali¹⁹ a un follow up di almeno 12 mesi (esito primario della revisione sistematica) non è risultata significativamente migliore nei pazienti trattati con criopallone rispetto a quelli trattati con radiofreguenza (69,1 vs 63,1%, OR 1.12, IC95% 0,97-1,29, p=0,13) e tale dato si è mantenuto anche nelle diverse analisi di sensitività prodotte dagli autori. Anche il tasso di re-interventi ablativi effettuati dopo il periodo di blanking di 3 mesi non differisce tra le due popolazioni di pazienti (8 studi, 12,7% vs 15,5%, OR 0,81, IC95% 0,55-1,18, p=0.26). Per quel che riquarda invece la presenza di tachiaritmie non riconducibili a fibrillazione atriale, il dato metanalitico risulta significativamente migliore per i pazienti trattati con criopallone rispetto a quelli trattati con radiofreguenza (OR 0,46, IC95% 0,26-0,83, p<0,01). Relativamente ai dati di performance tecnica, se il tempo di procedura risulta inferiore per il criopallone (differenza media pesata: -28,9 minuti, IC95%: da -49,0 a -8,8 minuti), quello di fluoroscopia non è risultato differente tra i gruppi (differenza media pesata: -2,6 minuti, IC95% da -6,4 a +1,3 minuti); gli autori evidenziano tuttavia una eterogeneità significativa tra i risultati riportati dagli studi relativamente a questi due esiti. La metanalisi dei dati di sicurezza è stata effettuata per tre

¹⁵ Cardoso 2016, Chen 2017b, Garg 2016, Liu 2016

Herrera Siklódy 2012, Hunter 2015, Kuck 2016, Luik 2015, Perez-Castellano 2014

Akerstrom 2014, Amin 2014, Aryana 2015, Ciconte 2015, Dulac 2014, Ferretto 2015, Jourda 2015, Juliá 2015, Khouery 2016, Knecht 2014, Kojodjoio 2010, Mokrani 2012, Mugnai 2014, Schmidt 2016, Squara 2015, Straube 2016, Wasserlauf 2015

¹⁸ Amin 2014, Dulac 2014, Ferretto 2015, Mokrani 2012

Definite come: fibrillazione atriale, flutter atriale, tachicardia atriale.

effetti avversi già noti ovvero la lesione del nervo frenico, l'effusione pericardica e il tamponamento pericardico. Sia l'effusione che il tamponamento pericardico sono risultati significativamente meno frequenti nei pazienti trattati con criopallone rispetto a quelli trattati con radiofrequenza (rispettivamente OR 0,44, IC95% 0,28-0,69, p<0,01 e OR 0,31, IC95% 0,15-0,64, p<0,01). Trentaquattro pazienti sui 2.401 (1,7%) trattati con criopallone e nessun paziente trattato con radiofrequenza presentavano una lesione del nervo frenico alla dimissione (OR 7,40, IC95% 2,56-21,34); la maggior parte delle lesioni si è comunque risolta in breve periodo, risultando persistente oltre i 12 mesi solo in 4/1.716 (0,2%) pazienti trattati con criopallone. L'incidenza di complicanze vascolari totali e maggiori e l'incidenza di ictus non è risultata differente tra i due gruppi.

La conclusione degli autori è che, in generale, l'efficacia del criopallone in termini di assenza di tachiaritmie atriali a un *follow up* superiore ai 12 mesi è simile a quella del catetere a radiofrequenza; stesso risultato si ottiene anche dal confronto limitato ai dispositivi più recenti. La crioablazione risulta inoltre associata a una minore incidenza di effusione o tamponamento pericardico ma a una maggiore incidenza di lesione del nervo frenico.

La revisione di Liu [Liu 2016], anch'essa pubblicata nel 2016 e con la ricerca della letteratura aggiornata ad aprile 2016, si differenzia tuttavia da quella precedente per alcuni criteri di inclusione e esclusione: sono stati infatti inclusi anche studi che hanno valutato cateteri a radiofrequenza più recenti, quali l'high density mesh ablator (MESH) e il multipolar duty-cycled pulmonary vein ablation catheter (PVAC) e con un follow up superiore a 3 mesi (e non a 12), ma sono stati esclusi gli studi non pubblicati in full text e con un numero di pazienti inferiore a 20. Gli esiti valutati sono stati la ricomparsa della fibrillazione atriale (esito primario di efficacia), l'incidenza di complicanze totali e maggiori (queste ultime intese come tutte le complicanze escluso il danno al nervo frenico), il tempo di procedura, di fluoroscopia e di ablazione, il tempo di rilascio di energia, il numero di vene polmonari isolate rispetto al target. La revisione ha incluso 40 studi, di cui 12 RCT²⁰ e 28 studi osservazionali controllati²¹ per un totale di 11.395 pazienti (4.535 trattati con con criopallone e 6.860 con radiofrequenza), con fibrillazione atriale solo parossistica (23 studi²²), solo persistente (1 studio [Ciconte 2015]) o parossistica o persistente

Herrera Siklódy 2012, Koch 2014, Kuck 2016, Luik 2015, Malmborg 2013a, Malmborg 2013b, Nagy-Balò
 2013, Perez-Castellano 2014, Pokushalov 2013, Schmidt 2013, Straube 2016, Tse 2005

Akerstrom 2014, Aryana 2015, Chierchia 2010, Ciconte 2015, Defaye 2010, Gaita 2011, Herm 2013, Herrera Siklódy 2011, Hoffman 2010, Jourda 2014, Juliá 2014, Kiss 2014, Knecht 2014, Kojodjoio 2010, Kuhne 2010, Linhart 2009, Maagh 2013, Mandell 2014, Mugnai 2014, Mugnai 2015, Neumannn 2010, Sauren 2009, Schmidt 2012, Schmidt 2014, Sorgente 2010, Squara 2015, Wasserlauf 2015, Wissner 2013

Akerstrom 2014, Chierchia 2010, Defaye 2010, Gaita 2011, Hoffman 2010, Herm 2013, Jourda 2014, Juliá 2014, Knecht 2014, Koch 2014, Kuhne 2010, Kuck 2016, Linhart 2009, Luik 2015, Mugnai 2014, Perez-Castellano 2014, Pokushalov 2013, Schmidt 2013, Schmidt 2014, Squara 2015, Straube 2016, Tse 2005, Wasserlauf 2015

(16 studi²³). Il *follow up* medio degli studi è compreso tra 3 e 25 mesi, l'età media dei pazienti tra 47.5 ± 14.1 anni e 66 ± 10 anni. La metanalisi dei risultati di efficacia ha evidenziato differenze statisticamente significative a favore del criopallone relativamente alla ricomparsa di fibrillazione atriale (OR 0,84, IC95% 0,73-0,96) e all'incidenza di complicanze maggiori (ovvero tutte le complicanze esclusa la lesione del nervo frenico) (RR 0,72, IC95% 0,58-0,90). L'uso di criopallone è tuttavia associato a una maggiore incidenza, statisticamente significativa, di complicanze totali (OR 1,38, IC95% 1,12-1,71). Per quel che riguarda gli esiti procedurali, il tempo di procedura è risultato significativamente inferiore per il criopallone (SMD²⁴ = -0,39, IC95% da -0,62 a -0,15, p<0,00001). Il numero di vene polmonari isolate durante la procedura, il tempo di fluoroscopia, il tempo di rilascio di energia e il tempo di ablazione non sono risultate significativamente diverse tra i due gruppi.

Dati i risultati in parte discordanti delle due revisioni sistematiche sulla fibrillazione atriale parossistica e la scarsità di dati relativi a quella persistente, è stato effettuato un aggiornamento della ricerca bibliografica a partire dal 2016.

Per la valutazione di efficacia, sicurezza e *performance* tecnica sono stati inclusi gli studi delle revisioni di Liu [Liu 2016] e Cardoso [Cardoso 2016] che rispettavano tutti i criteri di inclusione definiti nei PICOTS e gli studi pertinenti risultanti dall'aggiornamento della letteratura.

È stata inoltre eseguita un'integrazione dei dati relativi alla sicurezza del criopallone consultando le banche dati di dispositivo-vigilanza di agenzie governative.

Risultati della ricerca della letteratura primaria e della consultazione delle banche dati di dispositivo-vigilanza

La ricerca degli studi primari è stata effettuata secondo la strategia illustrata in Appendice 3. Dalle banche dati sono stati recuperati 797 record (*Figura 2, Appendice 3*) di cui 189 pubblicati a partire dal 2016. Sulla base della lettura del titolo e dell'abstract di questi 189 record, ne sono stati esclusi 105 perché non pertinenti e dei rimanenti 84 è stato recuperato il *full text*. Dalla lettura del *full text* sono stati esclusi 78/84 articoli.

Pertanto, sommando i 6 studi reperiti e inclusi dall'aggiornamento della letteratura ai 25 inclusi da Liu [Liu 2016] e Cardoso [Cardoso 2016] che rispondevano ai criteri di inclusione definiti nei PICOTS, sono risultati inclusi complessivamente 31 studi di cui 6 RCT²⁵ e 25 studi osservazionali controllati²⁶ (*Figura 2, Appendice 3*).

_

Aryana 2015, Herrera Siklódy 2011, Herrera Siklódy 2012, Kiss 2014, Kojodjoio 2010, Maagh 2013, Malmborg 2013a, Malmborg 2013b, Mandell 2014, Mugnai 2015, Nagy-Balò 2013, Neumannn 2010, Sauren 2009, Schmidt 2012, Wissner 2013

²⁴ SMD = standardised mean difference.

Herrera Siklodi 2012, Hunter 2015, Kuck 2016, Luik 2017, Malmborg 2013, Perez-Castellano 2014

Akerstrom 2014, Amin 2014, Aryana 2015, Aryana 2016, Boveda 2016, Ciconte 2015, Dulac 2014, Ferretto 2015, Jourda 2014, Juliá 2015, Kardos 2016, Khoueiry 2016, Knecht 2014, Kojodjojo 2010,

La maggioranza degli studi inclusi (29/31) ha confrontato l'ablazione con criopallone con quella a radiofrequenza esclusivamente o prevalentemente²⁷ in pazienti con fibrillazione atriale parossistica; solo 2 studi su 31 hanno incluso esclusivamente pazienti con fibrillazione atriale persistente.

La consultazione di siti e banche dati specifiche ha inoltre evidenziato 524 segnalazioni di eventi avversi e/o malfunzionamenti (*Appendice 3*, Tabelle A.1 e A.2), di cui la stragrande maggioranza (519/524) sono registrati nella banca dati MAUDE della Food and Drug Administration (FDA) dal 1° gennaio 2007 al 12 luglio 2017. Le banche dati consultate non specificano il tipo di fibrillazione atriale (parossistica o persistente) trattata.

Kuhne 2010, Maagh 2013, Miyazaki 2016, Mokrani 2012, Mugnai 2014, Providencia 2017, Schmidt 2016, Sorgente 2010, Squara 2015, Straube 2016, Wasserlauf 2015

²⁷ Ai fini dell'analisi, gli studi che includono pazienti con entrambi i tipi di fibrillazione atriale ma che

⁻ non riportano i dati separati per le sottopopolazioni di pazienti e che

⁻ includono una percentuale di pazienti con fibrillazione atriale parossistica superiore al 70% del totale sono stati considerati nella metanalisi relativa al quesito di ricerca numero 1, ovvero quello relativo all'impiego del criopallone nella fibrillazione atriale parossistica.

Risultati della valutazione di efficacia, sicurezza e performance tecnica

QUESITO DI RICERCA 1

In pazienti con fibrillazione atriale parossistica, l'ablazione delle vene polmonari mediante criopallone in sostituzione del catetere a radiofrequenza migliora sicurezza, efficacia e performance tecnica della procedura ablativa?

Per rispondere a questo quesito sono stati inclusi complessivamente 29 studi. Di questi, sei sono RCT²⁸ e 23 osservazionali controllati²⁹. Gli studi hanno incluso 11.635 pazienti in totale, di cui 5.396 trattati con criopallone (2.208 con quello di prima generazione, 2.438 con quello di seconda; per i rimanenti 750 l'informazione sul tipo di generazione del criopallone non era disponibile) e 6.548 con radiofrequenza (5.914 con catetere irrigato e 634 con altri tipi di catetere a radiofrequenza). Complessivamente, il 69,4% e il 67,8% dei pazienti trattati rispettivamente con criopallone o radiofrequenza è di sesso maschile; l'età media/mediana dei pazienti trattati con le due tecniche ablative è molto simile (59,2 anni con criopallone e 60 anni con radiofrequenza). 21 studi su 29 (per un totale di 7.478/11.635 pazienti) hanno specificato tra i loro criteri di inclusione l'arruolamento esclusivamente di soggetti refrattari ad almeno un farmaco antiaritmico e non precedentemente trattati con tecniche ablative. Il tempo medio/mediano di *follow up* degli studi inclusi è di 16 mesi.

Per quanto attiene alla qualità metodologica dei 6 RCT¹⁶ inclusi (*Figura 3, Appendice 4*), il rischio di bias non è stato giudicato serio: due sono stati giudicati ad alto rischio di *performance bias* e 4 a rischio di *performance bias* incerto (gli autori con fornisco sufficienti informazioni), uno ad alto rischio di *detection bias* e tre a rischio di *detection bias* incerto. Per tre studi il rischio di *selection bias* è incerto. Uno studio ha un rischio di bias incerto su *attrition* e *reporting bias*.

Per quanto attiene alla qualità metodologica valutata con la Newcastle Ottawa Scale, dei 23 studi osservazionali¹⁷ (*Figura 4, Appendice 4*), 6 presentano problemi di *selection bias*, 5 bias di comparabilità dei gruppi in studio e 2 di valutazione degli esiti. Complessivamente, il rischio di bias non è stato giudicato serio.

La metanalisi dei dati riferiti all'ablazione con criopallone verso il catetere a radiofrequenza è stata possibile per i seguenti esiti:

- efficacia: assenza di fibrillazione atriale, assenza di tachiaritmie atriali e ripetizione della procedura ablativa;
- sicurezza: effusione pericardica, tamponamento cardiaco e lesione del nervo frenico;
- performance tecnica: tempo di procedura e tempo di fluoroscopia.

Ove possibile, sono state fatte delle analisi di sensitività sulla base del tipo di studio (studi randomizzati e controllati verso non randomizzati) e del tipo di criopallone o di catetere a radiofrequenza utilizzato.

Herrera Siklódy 2012, Hunter 2015, Kuck 2016, Luik 2017, Malmborg 2013, Perez-Castellano 2014.

Akerstrom 2014, Amin 2014, Aryana 2015, Aryana 2016, Dulac 2014, Ferretto 2015, Jourda 2014, Juliá 2015, Kardos 2016, Khoueiry 2016, Knecht 2014, Kojodjojo 2010, Miyazaki 2016, Mokrani 2012, Mugnai 2014, Providencia 2017, Schmidt 2016, Squara 2015, Straube 2016, Wasserlauf 2015

Gli altri esiti di efficacia, sicurezza e *performance* tecnica riportati negli studi inclusi e per i quali non è stato possibile fornire una stima metanalitica sono stati sintetizzati quantitativamente o descritti in modo narrativo.

Sono stati inoltre descritti in modo narrativo gli effetti avversi riportati (in modo non comparativo e non specifico per fibrillazione atriale parossistica e persistente) nelle banche dati di dispositivo-vigilanza.

Valutazione dell'efficacia

Complessivamente 26 studi su 29 riportano dati di efficacia.³⁰ La metanalisi dei dati è stata effettuata per i seguenti esiti:

- assenza di fibrillazione atriale intesa come assenza di sintomi riferiti a fibrillazione atriale e/o
 aritmie atriali quando rilevati anche all'ECG e di durata superiore a 30 secondi dopo il periodo
 di blanking di 3 mesi;
- assenza di tachiaritmie atriali in generale intesa come assenza di fibrillazione atriale, flutter atriale o tachicardia atriale,
- ripetizione della procedura ablativa.

I dati relativi alla percentuale di pazienti in trattamento con farmaci per la fibrillazione atriale, con necessità di cardioversione elettrica o farmacologica e il numero di accessi ospedalieri per fibrillazione atriale sono stati sintetizzati in modo quantitativo.

Per tutti gli esiti è stato considerato un *follow up* uguale o superiore a 12 mesi, escludendo i dati rilevati durante il periodo di *blanking*.

³⁰ Akerstrom 2014, Amin 2014, Aryana 2015, Aryana 2016, Dulac 2014, Ferretto 2015, Herrera Siklódy 2012, Hunter 2016, Jourda 2014, Juliá 2015, Kardos 2016, Khoueiry 2016, Knecht 2014, Kojodjojo 2010, Malmborg 2013, Miyazaki 2016, Mokrani 2012, Mugnai 2014, Perez-Castellano 2014, Providencia 2017, Schmidt 2016, Squara 2015, Straube 2016, Wasserlauf 2015

Assenza di fibrillazione atriale

Nella metanalisi sono stati inclusi 17 studi di cui 4 RCT³¹ e 13 studi non randomizzati controllati per un totale di 2.320 pazienti nel gruppo trattato con criopallone e 3.271 con cateteri a radiofrequenza (3.180 con catetere irrigato e 91 con cateteri multielettrodo a radiofrequenza).

La metanalisi (*Figura 5*) non indica nessuna differenza tra le due tecniche rispetto a questo esito (RR: 1,05 [0,99-1,10]); includendo nella metanalisi solo i 15 studi che hanno confrontato la crioablazione solo con catetere irrigato a radiofrequenza il risultato non cambia (RR: 1,04 [0,99-1,10]). Il test per verificare la presenza di eterogeneità tra gli studi è risultato negativo.

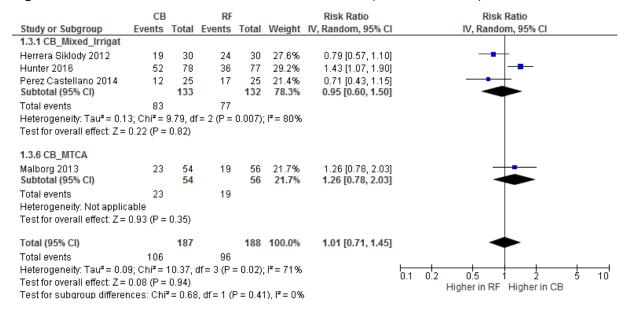

Lo stesso risultato si ottiene per tutte le sotto-analisi effettuate. Le due tecniche risultano infatti comparabili (RR: 1,01 [0,71-1,45]) anche nel caso in cui si includano nella metanalisi solo gli RCT (4 studi che hanno arruolato 187 pazienti nel gruppo con criopallone e 188 - di cui 132 con catetere irrigato e 56 con PVAC - nel gruppo della radiofrequenza, *Figura 6*); il test di eterogeneità risulta tuttavia positivo per lo scarso numero di studi e la direzione dell'effetto.

Figura 5. Assenza di fibrillazione atriale, confronto tra criopallone e radiofrequenza, RCTs e studi osservazionali

	СВ		RF			Risk Ratio	Risk Ratio
Study or Subgroup				Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.5.1 CB_mixed_Irrigat						,	
Amin 2014	34	48	36	50	3.7%	0.98 [0.77, 1.26]	-
Aryana 2015	604	773	302	423	18.1%	1.09 [1.02, 1.17]	•
Dulac 2014	22	28	14	21	2.0%	1.18 [0.82, 1.69]	
Herrera Siklody 2012	19	30	24	30	2.3%	0.79 [0.57, 1.10]	
Hunter 2016	52	78	36	77	3.0%	1.43 [1.07, 1.90]	
Jourda 2015	64	75	66	75	10.6%	0.97 [0.86, 1.10]	+
Julià 2015	81	100	147	186	11.1%	1.02 [0.91, 1.16]	+
Kardos 2016	32	40	45	58	5.1%	1.03 [0.84, 1.27]	+
Knecht 2014	34	71	40	71	2.5%	0.85 [0.62, 1.17]	
Kojodjojo 2010	69	90	33	53	4.1%	1.23 [0.97, 1.56]	 • -
Mokrani 2012	27	34	76	108	5.0%	1.13 [0.91, 1.39]	 -
Mugnai 2014	86	136	149	260	7.3%	1.10 [0.94, 1.30]	 -
Perez Castellano 2014	12	25	17	25	1.1%	0.71 [0.43, 1.15]	
Schmidt 2016	327	603	897	1643	15.7%	0.99 [0.91, 1.08]	+
Wasserlauf 2015	61	101	61	100	4.6%	0.99 [0.79, 1.24]	+
Subtotal (95% CI)		2232		3180	96.2%	1.04 [0.99, 1.10]	•
Total events	1524		1943				
Heterogeneity: Tau² = 0.0	0; Chi * =	19.52, (df = 14 (F	' = 0.15); I ^z = 289	6	
Test for overall effect: Z=	1.43 (P =	0.15)					
1.5.2 CB_MTCA							
Malborg 2013	23	54	19	56	1.1%	1.26 [0.78, 2.03]	
Mokrani 2012	27	34	22	35	2.6%	1.26 [0.93, 1.72]	+
Subtotal (95% CI)		88		91	3.8%	1.26 [0.97, 1.63]	•
Total events	50		41				
Heterogeneity: Tau ² = 0.00	0; Chi²=	0.00, dt	f=1 (P=	0.98); f	²=0%		
Test for overall effect: Z=	1.76 (P =	0.08)					
Total (95% CI)		2320		3271	100.0%	1.05 [0.99, 1.10]	•
Total events	1574		1984				
Heterogeneity: Tau ² = 0.00		21.55. (= 0.16); I ^z = 269	6	
Test for overall effect: Z=	•						0.1 0.2 0.5 1 2 5 10
Test for subgroup differer	•		i, df = 1 (i	P = 0.16	5), I² = 51.	3%	Higher in RF Higher in CB

Herrera Siklódy 2012, Hunter 2016, Malmborg 2013, Perez-Castellano 2014

Figura 6. Assenza di fibrillazione atriale, confronto tra criopallone e radiofrequenza, solo RCTs

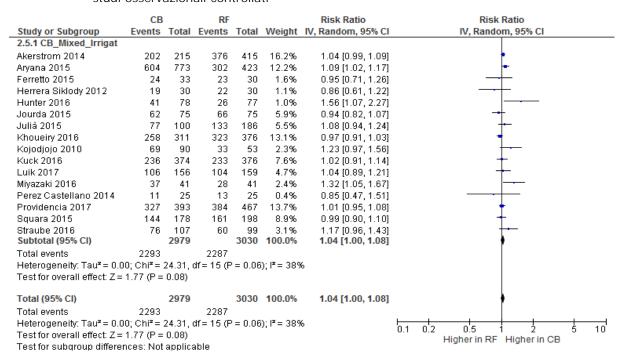
Anche la metanalisi che ha incluso solo gli studi osservazionali controllati (12 studi che hanno arruolato 1.360 pazienti nel gruppo con criopallone e 2.660 pazienti - 2.625 con catetere irrigato e 35 con PVAC - nel gruppo della radiofrequenza) non evidenzia differenze tra le due tecniche ([RR 1,03, 0,98-1,08], nessuna eterogeneità tra gli studi, *Figura 7, Appendice 7*).

Relativamente al criopallone di seconda generazione (CB2), nella metanalisi sono stati inclusi solo 3 studi osservazionali controllati che hanno arruolato 143 pazienti nel gruppo con criopallone e 154 nel gruppo catetere irrigato a radiofrequenza. Anche in questo caso le due tecniche risultano comparabili (RR: 1,00 [0,90-1,11]); non è stata rilevata eterogeneità tra gli studi (*Figura 8*).

Figura 8. Assenza di fibrillazione atriale, confronto tra criopallone di seconda generazione e radiofreguenza

	Experim	ental	Control Risk Ratio		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	I IV, Random, 95% CI
1.2.1 CB2_Irrigat							
Dulac 2014	22	28	14	21	8.2%	1.18 [0.82, 1.69]] +
Jourda 2015	64	75	66	75	67.2%	0.97 [0.86, 1.10]] =
Kardos 2016	32	40	45	58	24.6%	1.03 [0.84, 1.27]	<u>+</u>
Subtotal (95% CI)		143		154	100.0%	1.00 [0.90, 1.11]	i ♦
Total events	118		125				
Heterogeneity: Tau² =	0.00; Chi ²	= 1.12,	df = 2 (P	= 0.57)	; I² = 0%		
Test for overall effect:	Z = 0.01 (F	P = 0.99)				
Total (95% CI)		143		154	100.0%	1.00 [0.90, 1.11]	1 •
Total events	118		125				
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 1.12$, $df = 2$ ($P = 0.57$); $I^2 = 0\%$; I² = 0%		1,4 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5
Test for overall effect: Z = 0.01 (P = 0.99)						0.1 0.2 0.5 1 2 5 10 Higher RF Higher CB	
Test for subgroup differences: Not applicable							Fligher N. Higher Cb

Assenza di tachiaritmie atriali

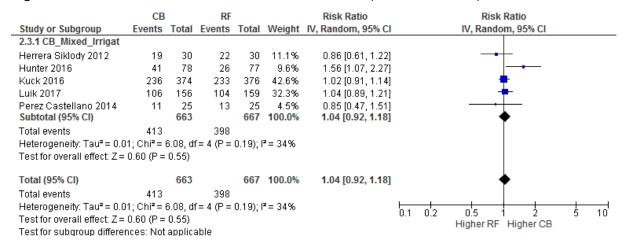

La metanalisi, che ha incluso complessivamente 16 studi di cui 5 RCT (2.293 pazienti nel gruppo con criopallone e 2.287 nel gruppo radiofrequenza), mostra un risultato positivo a favore del criopallone anche se non statisticamente significativo (RR: 1,04 [1,00-1,08], *Figura 9*). Il test di eterogeneità è risultato non significativo.

Il dato viene confermato dalla metanalisi che ha incluso solo i 5 RCT (663 pazienti nel gruppo con criopallone e 667 pazienti nel gruppo della radiofrequenza) (RR: 1,04 [0,92-1,18], *Figura 10*). Anche in questo caso, il test di eterogeneità è non significativo.

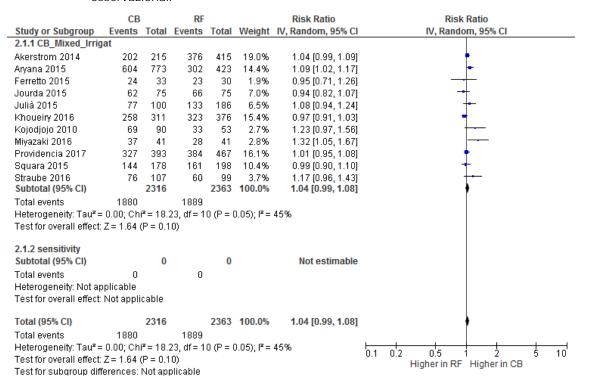
Anche la metanalisi degli 11 studi controllati non randomizzati (2.316 pazienti nel gruppo con criopallone e 2.263 pazienti nel gruppo radiofrequenza) evidenzia la comparabilità delle due tecniche (RR: 1,04 [0,99-1,08]) pur in presenza di eterogeneità significativa tra gli studi (*Figura 11*). Tuttavia, eliminando dalla metanalisi i dati relativi ai 3 studi con un numero limitato di pazienti e quindi peso relativamente basso, ³² l'eterogeneità - prima presente - si annulla e le due tecniche risultano ancora una volta comparabili (RR 1,02 [0,99-1,06], *Figura 12, Appendice 7*).

In ultimo, la metanalisi dei dati degli studi che hanno valutato il criopallone di seconda generazione (5 studi non randomizzati controllati che hanno incluso 1.100 pazienti nel gruppo con criopallone e 767 nel gruppo radiofrequenza)³³ non evidenzia differenze statisticamente significative (RR: 1,04 [0,95-1,14], *Figura 13*) anche se l'effetto nei singoli studi non è omogeneo (il test di eterogeneità è significativo).

Figura 9. Assenza di tachiaritmie atriali, confronto tra criopallone e radiofrequenza, RCTS e studi osservazionali controllati



Ferretto 2015, Kojodjojo 2010, Miyazaki 2016


⁻

³³ Aryana 2015, Ferretto 2015, Jourda 2015, Miyazaki 2016, Squara 2015

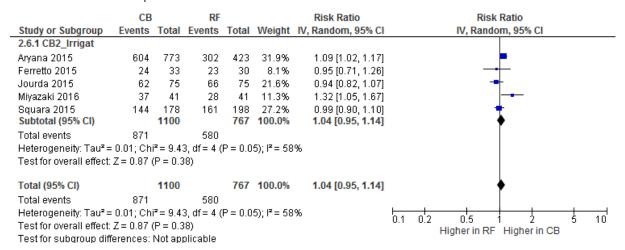
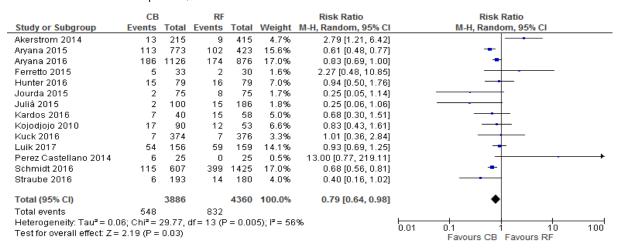

Figura 10. Assenza di tachiaritmie atriali, confronto tra criopallone e radiofrequenza, solo RCTs

Figura 11. Assenza di tachiaritmie atriali, confronto tra criopallone e radiofrequenza, solo studi osservazionali


Figura 13. Assenza di tachiaritmie atriali, confronto tra criopallone di seconda generazione e radiofreguenza

Ripetizione della procedura ablativa

La metanalisi, che ha incluso complessivamente 14 studi di cui 4 RCT³⁴ (3.886 pazienti nel gruppo con criopallone e 4.360 nel gruppo radiofrequenza), mostra un risultato positivo a favore del criopallone (RR: 0,79 [0,64-0,98], *Figura 14*) anche se il test di eterogeneità tra gli studi risulta significativo.

Figura 14. Ripetizione della procedura di ablazione, confronto tra criopallone e radiofreguenza, RCTs e osservazionali controllati

D'altra parte la sotto-analisi che include solo i 4 RCT citati sopra (mostra un rischio di ripetizione della procedura comparabile tra le due tecniche (RR: 0,99 [0,62-1,59], *Figura 15, Appendice 7*), con un test di eterogeneità non significativo, mentre la sotto-analisi limitata ai 10 studi osservazionali riporta un risultato simile a quello dell'analisi principale (RR: 0,69 [0,51-0,93], *Figura 16, Appendice 7*) ancora una volta con un test di eterogeneità significativo.

³⁴ Kuck 2016, Hunter 20016, Luik 2017, Perez-Castellano 2014

Altri esiti di efficacia

Sul totale dei 26 studi che riportano risultati sugli esiti di efficacia, quattro [Aryana 2015, Kuck 2016, Malmborg 2013, Schmidt 2016] presentano dati sulla somministrazione di farmaci nel periodo post-*blanking*, due [Schmidt 2016, Straube 2016] sugli accessi ospedalieri, uno [Straube 2016] sulla cardioversione elettrica e/o farmacologica. Quattro studi [Kuck 2016, Mugnai 2014, Schmidt 2016, Straube 2016] riportano dati sulla mortalità.

Tabella 3. Altri esiti di efficacia

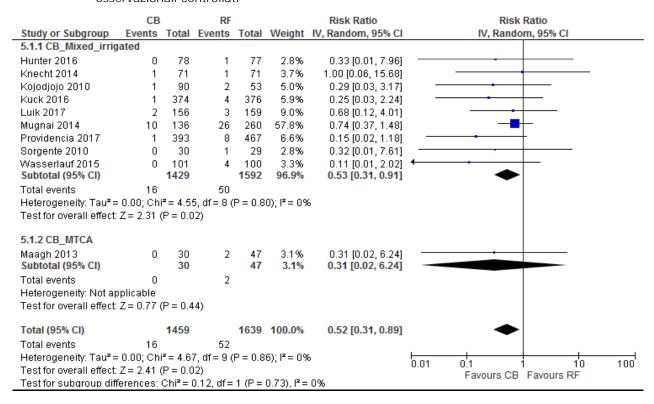
Esito	Grup	po criopallone	Gruppo radiofrequenza	
_	N	% (IC95%CI)	N	% (IC95%)
Somministrazione di farmaci antiaritmci nel periodo post-blanking	348	19,2% (17,5-21,2%)	446	19.6% (18,0-21,3%)
Accessi ospedalieri	286	35,8% (32,4-39,2%)	806	50,2% (47,7-57,7%)
Cardioversione elettrica o farmacologica	2	1,0% (0,2-4,1%)	20	11,1% (7,1-16,9%)
Mortalità a lungo termine	0	0% (0-0,36%)	0	0% (0-0,21%)

N = numero di eventi

Valutazione della sicurezza

È stato possibile effettuare la metanalisi dei dati per i sequenti esiti di sicurezza:

- effusione pericardica;
- tamponamento cardiaco;
- lesione del nervo frenico.


Sono stati inoltre descritti in modo narrativo gli altri effetti avversi riportati nei 29 studi inclusi e quelli riportati nelle banche dati di dispositivo-vigilanza di diverse agenzie governative.

Effusione pericardica

Sono complessivamente 10 gli studi che riportano dati relativi all'effusione pericardica associata all'isolamento delle vene polmonari (3 RCT³⁵ e 7 studi osservazionali controllati, *Figura 17*). Il dato metanalitico mostra un'incidenza significativamente inferiore a favore del gruppo di pazienti trattati con crioablazione rispetto a quelli trattati con radiofrequenza (RR 0,52, [0,31-0,89]). Non è presente eterogeneità degli studi.

Tale dato si conferma nella sotto-analisi relativa ai soli studi osservazionali (RR: 0,54, [0,30-0,97]) (*Figura 18*) ma non nei soli 3 RCT inclusi (RR: 0,43 [0,12-1,54]) (*Figura 19*), ove tale differenza perde di significatività.

Figura 17. Effusione pericardica, confronto tra criopallone e radiofrequenza, RCTs e studi osservazionali controllati

³⁵ Hunter 2016, Kuck 2016, Luik 2017

Figura 18. Effusione pericardica, confronto tra criopallone e radiofrequenza, solo studi osservazionali controllati

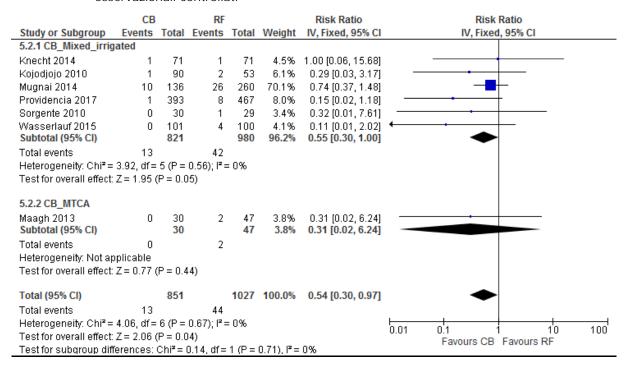
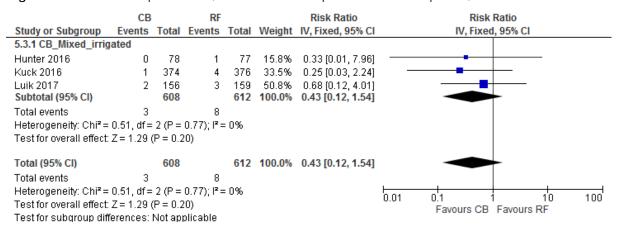



Figura 19. Effusione pericardica, confronto tra criopallone e radiofreguenza, solo RCTs

Tamponamento pericardico

L'incidenza di tamponamento pericardico associato all'isolamento delle vene polmonari risulta statisticamente inferiore nei 2.713 pazienti trattati con criopallone rispetto ai 3.643 trattati con radiofrequenza (RR: 0,33 [0,18-0,62], Figura 20).

Tale risultato non viene confermato dalla metanalisi dei dati derivati dai soli 2 RCT (Figura 21) e dagli studi che confrontano il criopallone di seconda generazione con il catetere a radiofrequenza (Figura 22).

Figura 20. Tamponamento pericardico, confronto tra criopallone e radiofrequenza, RCTs e studi osservazionali controllati

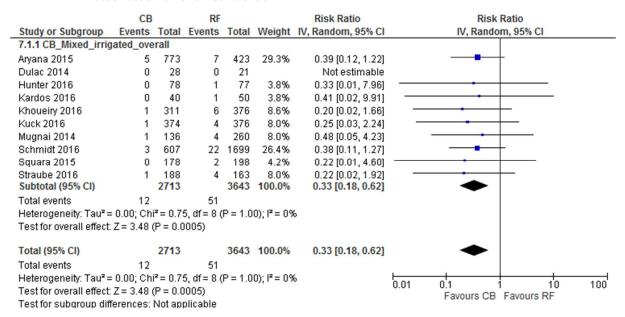
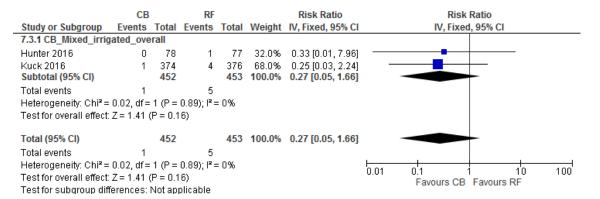
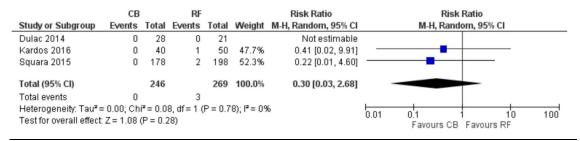




Figura 21. Tamponamento pericardico, confronto tra criopallone e radiofreguenza, solo RCTs

Figura 22. Tamponamento pericardico, confronto tra criopallone di seconda generazione e radiofreguenza

Lesione del nervo frenico

La lesione del nervo frenico alla dimissione risulta significativamente più frequente nei pazienti trattati con crioablazione rispetto a quelli sottoposti a isolamento delle vene polmonari con radiofrequenza (16 studi, 50/4.506 eventi verso 5/5.167 eventi, RR: 5,43 [2,67-11,04], Figura 23.

Tale dato viene confermato anche dalle sotto-analisi per tipologia di studio (Figura 24 e 25, Appendice 7), mentre dal confronto tra criopallone di seconda generazione e catetere a radiofrequenza irrigato (solo 3 studi osservazionali controllati, 9/1.207 verso 0/975 eventi nei due gruppi) la differenza sembra perdere di significatività (Figura 26).

Figura 23. Lesione del nervo frenico, confronto tra criopallone e radiofrequenza, RCTs e studi e osservazionali controllati

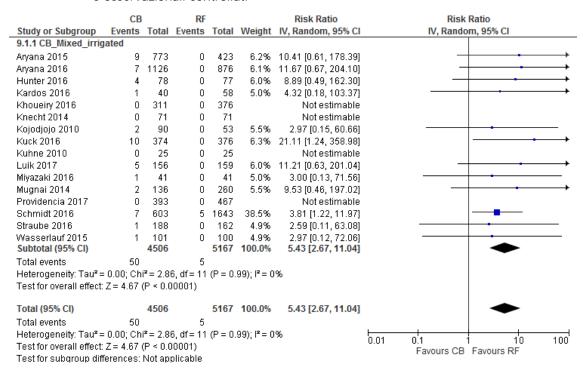
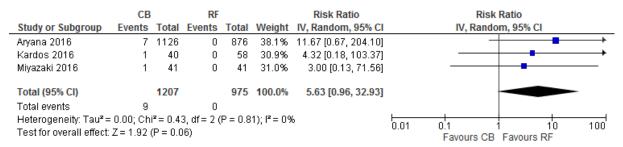



Figura 26. Lesione del nervo frenico: criopallone di seconda generazione verso radiofrequenza

Altri effetti avversi riportati nei 29 studi controllati inclusi

Nei 29 studi sulla fibrillazione atriale parossistica sono state inoltre mappate e quantificate le complicanze riportate in Tabella 4.

Tabella 4. Altri eventi avversi

Tipo di evento avverso	Numero di	Criopa	allone	Radiofre	Radiofrequenza	
	studi -	Numero eventi	Numero pazienti	Numero eventi	Numero pazienti	
ictus/TIA	6	5	1.433	8	2.433	
eventi tromboembolici	2	1	489	3	352	
stenosi della vena polmonare	2	0	215	1	339	
fistola atrio-esofagea	7	0	1.851	0	2.714	
morte	2	0	346	0	497	

Altri effetti riportati nelle banche dati di dispositivo-vigilanza

La consultazione dei siti di dispositivo-vigilanza ha portato al reperimento di 3 avvisi di sicurezza (*Appendice 5*) e 521 segnalazioni di eventi avversi (*Appendice 6*) di cui 519 registrati nella banca dati MAUDE della Food and Drug Administration (FDA) dal 1° gennaio 2007 al 12 luglio 2017.

Le banche dati di dispositivo-vigilanza non specificano se il criopallone fosse stato utilizzato nel trattamento della fibrillazione atriale parossistica o persistente.

Dei 519 eventi avversi registrati nel MAUDE, 499 sono relativi al catetere Arctic Front Advance® e 20 al catetere Arctic Front®. 354 effetti avversi sono classificati come "injury", 142 come "malfunction" e 23 come "death". Nella categoria injury gli eventi avversi, ove possibile, sono stati raggruppati in tipologie desunte dal sito web del produttore del dispositivo medico. Sul totale delle complicanze riportate, quelle più frequenti sono la lesione del nervo frenico (37%), l'effusione pericardica (18%) e il tamponamento cardiaco (7%). I dettagli dell'analisi sono riportati in Appendice 6.

http://www.medtronic.com/us-en/healthcare-professionals/products/cardiac-rhythm/ablation-atrial-fibrillation/arctic-front/indications-safety-warnings.html (ultimo accesso ottobre 2017).

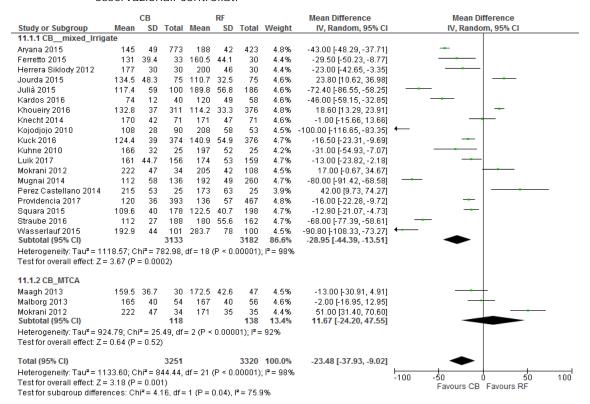
Valutazione della performance tecnica

Dei 4 esiti di *performance* tecnica definiti nel PICO, il tempo di procedura e il tempo di fluoroscopia sono stati analizzati mediante metanalisi, mentre il successo al termine della procedura, definito come percentuale di isolamento delle vene polmonari, è stato descritto in forma narrativa.

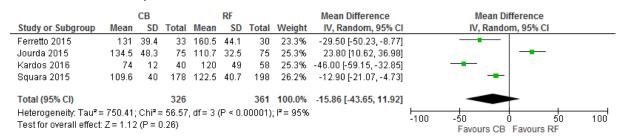
Non è stato invece possibile valutare la differenza tra le due tecniche relativamente al tempo di permanenza del catetere in atrio sinistro in quanto gli studi inclusi non riportavano questo dato.

Tempo di procedura

Complessivamente, 22 studi su 29 (di cui 4 RCT³⁷) hanno valutato il tempo di procedura: la differenza del tempo di procedura risulta statisticamente significativa tra le due tecniche a favore del criopallone rispetto (MD: -23,48 minuti, da -37,97 a -9,02, *Figura 27*) ma vi è eterogeneità significativa tra gli studi.

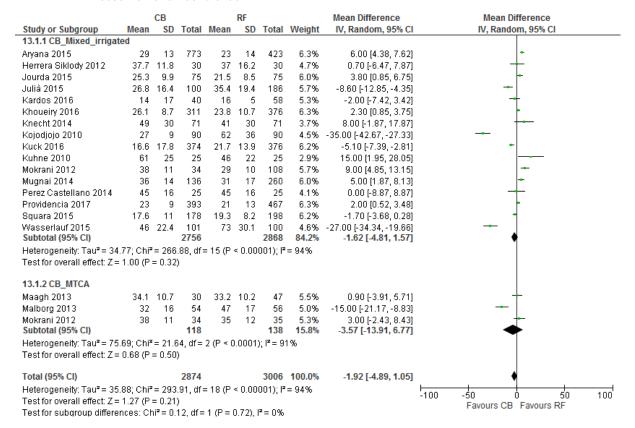

Considerando solo i dati dei 4 RCT, il tempo procedura non risulta statisticamente diverso tra le due tecniche ma anche in questo caso il test di eterogeneità è significativo (*Figura 28, Appendice 7*).

Infine, considerando i 4 studi con il criopallone di seconda generazione, il tempo di procedura non risulta statisticamente diverso tra le due tecniche; anche in questo caso il test di eterogeneità risulta significativo (MD: -15,86 minuti [da -43,65 a 11,92], *Figura 29*).


-

Herrera-Siklódy 2012, Kuck 2016, Luik 2017, Perez-Castellano 2014

Figura 27. Tempo di procedura, confronto tra criopallone e radiofrequenza, RCTs e studi osservazionali controllati


Figura 29. Tempo di procedura, confronto tra criopallone di seconda generazione e radiofreguenza

Tempo di fluoroscopia

La differenza del tempo di fluoroscopia tra le due tecniche non risulta statisticamente significativa (MD: -1,92 minuti [da -4,89 a 1,05], *Figura 30*); è presente eterogeneità tra gli studi. Questo risultato si mantiene tale anche nelle sotto-analisi effettuate (solo RCT, solo osservazionali, criopallone di seconda generazione, *Figure 31, 32 e 33, Appendice 7*).

Figura 30. Tempo di fluoroscopia, confronto tra criopallone e radiofrequenza, RCTs e studi osservazionali controllati

Isolamento delle vene polmonari

Sul totale dei 29 studi relativi al primo quesito di ricerca, 17 (per un totale di 3.594 pazienti trattati con criopallone e 4.048 con radiofrequenza) hanno valutato il successo della procedura misurato come: percentuale di vene ablate sul target delle 4 vene (6 studi)³⁸ e/o percentuale di pazienti con tutte e 4 le vene ablate (11 studi).³⁹

La media della percentuale di vene ablate sul target delle 4 vene risulta rispettivamente nel gruppo trattato con criopallone e con radiofrequenza del 90% (*range*: 48-100%) e del 99% (*range*: 93-100%).

La media della percentuale dei pazienti con 4 vene ablate risulta rispettivamente nel gruppo trattato con criopallone e con radiofrequenza dell'85% (*range*: 56-100%) e del 90% (*range*: 48-100%).

38 Kojodjojo 2010, Maagh 2013, Perez-Castellano 2014, Straube 2016, Squara 2015, Wasserlauf 2015

Aryana 2015, Aryana 2016, Dulac 2014, Hunter 2016, Kardos 2016, Julià 2015, Malmborg 2013, Mokrani 2012, Mugnai 2014, Perez-Castellano 2014, Schmidt 2016

QUESITO DI RICERCA 2

In pazienti con fibrillazione atriale persistente, l'ablazione delle vene polmonari mediante criopallone in sostituzione del catetere a radiofrequenza migliora sicurezza, efficacia e performance tecnica della procedura ablativa?

La ricerca bibliografica ha portato al reperimento e inclusione solo di 2 studi osservazionali controllati [Boveda 2016, Ciconte 2015] per un totale di 218 pazienti studiati (109 trattati con criopallone e 109 con catetere irrigato a radiofrequenza). Entrambi gli studi hanno arruolato esclusivamente pazienti con fibrillazione atriale persistente, resistenti ad almeno un farmaco antiaritmico e non precedentemente trattati con procedure ablative. La valutazione della qualità metodologica dei due studi non ha evidenziato particolari rischi di bias (vedi *Figura 4bis, Appendice 4*).

Lo studio di Ciconte e colleghi [Ciconte 2015] ha incluso 100 pazienti con fibrillazione atriale persistente e resistente ad almeno un farmaco antiaritmico, trattati per la prima volta con ablazione mediante criopallone di seconda generazione (CB2) o catetere a radiofrequenza irrigato con monitoraggio *contact-force* (catetere a radiofrequenza di seconda generazione) guidata da mappaggio in 3D. I pazienti avevano un'età media di 62,4+9,6 anni, erano per il 74% maschi e con una durata media di fibrillazione atriale di 29,6+31,2 mesi; ipertensione, dislipidemia e diabete sono risultati essere più frequenti nei pazienti trattati con radiofrequenza anche se tale differenza non è risultata statisticamente significativa.

Il secondo studio incluso [Boveda 2016] è multicentrico, *propensity-score matched* e ha arruolato in modo prospettico 59 pazienti trattati con criopallone di prima generazione matchati con 59 pazienti trattati con ablazione con catetere irrigato non *contact-force* a radiofrequenza (età media: 59,9+10,7 anni, percentuale di donne: 17,8%, ipertensione 30,5%, diabete mellito: 5,1% e precedente ictus/TIA: 2,5%; durata media della fibrillazione atriale: 4,0+4,0 anni). Entrambi i gruppi sono stati estratti da un database più ampio che arruola prospetticamente i pazienti con fibrillazione atriale parossistica o persistente e trattati in sei centri di riferimento francesi per le tecniche ablative.

La consultazione dei siti di dispositivo-vigilanza ha portato al reperimento di 3 avvisi di sicurezza (*Appendice 5*) e di 521 segnalazioni di eventi avversi (*Appendice 6*) di cui 519 registrati nella banca dati MAUDE della Food and Drug Administration dal 1° gennaio 2007 al 12 luglio 2017.

Valutazione dell'efficacia

Controllo dei sintomi associati alla fibrillazione atriale/mantenimento del ritmo sinusale

Entrambi gli studi, con durata di *follow up* diversa ma uguale o superiore a 12 mesi, riportano una percentuale di pazienti senza aritmie simile nei due gruppi di trattamento: 30/50 (60%) pazienti trattati con crioablazione e 28/50 (56%) pazienti trattati con radiofrequenza (p=0,71) [Ciconte 2015] e 34/59 (57,6%) per crioablazione verso 29/59 (49,2%) per radiofrequenza (HR = 0,67, IC95% 0,38-1,16) [Boveda 2016].

Ripetizione della procedura ablativa

Solo lo studio di Ciconte [Ciconte 2015] riporta l'incidenza di ripetizione della procedura in 7/50 e 11/50 pazienti trattati rispettivamente con crioablazione o radiofrequenza (p = 0,36).

Somministrazione di farmaci per la fibrillazione atriale

Gli studi inclusi non riportano dati riferiti alla somministrazione di farmaci antiaritmici successivamente al periodo di *blanking*.

Cardioversione elettrica o farmacologica

Gli studi inclusi non riportano dati riferiti alla somministrazione di farmaci antiaritmici successivamente al periodo di *blanking*.

Accessi ospedalieri per la fibrillazione atriale

Gli studi inclusi non riportano dati relativamente a questo esito.

Valutazione della sicurezza

Effetti riportati negli studi clinici

Gli effetti a livello cardiaco (tamponamento o effusione pericardiche) si sono verificati solo nei pazienti trattati con radiofrequenza (complessivamente 3/109 pazienti trattati). Complicanze a livello dell'acceso vascolare si sono verificate complessivamente in 3/109 e 4/109 pazienti trattati rispettivamente con radiofrequenza e crioablazione. In un solo studio [Boveda 2016] sono stati riportati 2 attacchi ischemici transitori, uno per ciascun gruppo di trattamento. Non è stato riportato nessun caso di morte legata alla procedura e di paralisi permanente del nervo frenico. 40 *Altri effetti riportati nelle banche dati di dispositivo-vigilanza*

Come già anticipato, le banche dati di dispositivo-vigilanza non specificano se il criopallone sia stato utilizzato nel trattamento della fibrillazione atriale parossistica o persistente; pertanto di seguito si riportano i dati già riportati nella sezione relativa al Quesito di ricerca n. 1.

La consultazione dei siti di dispositivo-vigilanza ha portato al reperimento di 3 avvisi di sicurezza (*Appendice 5*) e 521 segnalazioni di eventi avversi (*Appendice 6*) di cui 519 registrati nella banca dati MAUDE della Food and Drug Administration dal 1° gennaio 2007 al 12 luglio 2017.

Dei 519 eventi avversi registrati nel MAUDE, 499 sono relativi al catetere Arctic Front Advance® e 20 al catetere Arctic Front®. 354 effetti avversi sono classificati come "injury", 142 come "malfunction" e 23 come "death". Nella categoria injury gli eventi avversi, ove possibile, sono stati raggruppati in tipologie desunte dal sito web del produttore del dispositivo medico.⁴¹ Sul totale delle complicanze riportate, quelle più frequenti sono la lesione del nervo frenico (37%),

⁴⁰ Intesa come paralisi del nervo frenico ancora presente alla dimissione.

http://www.medtronic.com/us-en/healthcare-professionals/products/cardiac-rhythm/ablation-atrial-fibrillation/arctic-front/indications-safety-warnings.html (ultimo accesso ottobre 2017)

l'effusione pericardica (18%) e il tamponamento cardiaco (7%). I dettagli dell'analisi sono riportati in Appendice 6.

Valutazione della performance tecnica

Tempo totale di procedura

Entrambi gli studi inclusi riportano tempi di procedura inferiori per la crioablazione rispetto alla radiofrequenza ([Ciconte 2015]: 90.5+41.7 verso 140.2+46.9 minuti, p=0.001; [Boveda 2016]: 120+33 verso 152+61 minuti, p=0.001).

Tempo di fluoroscopia

I due studi riportano dati non omogenei; lo studio di Ciconte [Ciconte 2015] riporta tempi significativamente minori per i pazienti trattati con crioablazione rispetto a quelli trattati con radiofrequenza (14,5+6,6 verso 19,8+6,8 minuti, p = 0,001), lo studio di Boveda [Boveda 2016] riporta invece tempi di fluoroscopia analoghi (25+11 verso 28+16 minuti, p = 0,27).

Tempo di permanenza del catetere in atrio sinistro

Gli studi inclusi non riportano dati relativamente a questo esito.

Isolamento delle vene polmonari

Entrambi gli studi riportano la stessa efficacia nell'isolamento delle vene polmonari a fine procedura (98,3% per i pazienti inclusi da Boveda [Boveda 2016] e 100% per i pazienti inclusi da Ciconte [Ciconte 2015]). Boveda e collaboratori [Boveda 2016] tuttavia evidenziano che 5/59 (8,5%) pazienti trattati con crioablazione hanno necessitato di un'ablazione aggiuntiva punto a punto con radiofrequenza.

STUDI IN CORSO

In totale sono stati reperiti 58 studi in corso, di cui 27 pertinenti. Di questi, 21 soddisfano i criteri di inclusione definiti nei PICOTS e se ne riportano i dettagli in Appendice 8; i rimanenti 6 studi⁴² sono stati comunque descritti nel paragrafo "altri impieghi" in quanto interessanti dal punto di vista del futuro impiego di questa tecnologia.

Dei 21 studi inclusi la maggior parte sono ancora in via di svolgimento; ⁴³ due risultano già terminati ma i risultati non sono stati ancora pubblicati (NCT00821015, NCT00889681) mentre lo studio NCT02166723 non viene aggiornato dal 2014.

Solo 9 su 21⁴⁴ hanno ricevuto finanziamenti dall'industria, in particolare dalla Medtronic™.

Per quanto riguarda il disegno, 9/21 studi sono controllati: 8 sono RCT⁴⁵ e 1 è uno studio osservazionale (NCT03148392). Sia gli RCT che lo studio osservazionale utilizzano cateteri irrigati.

Dei rimanenti 12 studi, 9 sono osservazionali prospettici non controllati,⁴⁶ uno è osservazionale retrospettivo (NCT02166723) e due sono registri prospettici (NCT02785991, NCT03040037).

Non tutti gli studi specificano il modello di catetere utilizzato nella crioablazione. Solo negli studi NCT02588183, NCT03008811, NCT02611869 viene specificato che si tratta del catetere Arctic Front[®] di seconda generazione. Lo studio NCT02553239 ha l'obiettivo di valutare la sicurezza di un nuovo crio-catetere circolare (CoolLoop[®]) che, come il criopallone, dovrebbe consentire l'isolamento delle vene polmonari mediante singola erogazione di crioenergia (ablazione *one-shot*).

La crioablazione, anche negli studi in corso, risulta essere sperimentata nella maggior parte dei casi in pazienti con fibrillazione atriale parossistica. ⁴⁷ Solo in 5 studi su 21 viene sperimentata la sua efficacia nella fibrillazione persistente. ⁴⁸

⁴² NCT02789358, NCT02074566, NCT02217254, NCT03003975, DRKS00012423, UMIN000018901

NCT01456949, NCT02294929, NCT02785991, NCT00889681, NCT02639793, NCT02588183, NCT02553239, NCT03012841 NCT03012841, NCT03040037, NCT01913522, NCT03008811, NCT03148392, NCT02611869, NCT03044951, NCT02998866, CT02213731, UMIN000022272, ACTRN12615000967583, UMIN000018461

⁴⁴ NCT01456949, NCT02294929, NCT02785991, NCT00889681, NCT02553239, NCT03012841, NCT03148392, NCT02213731, UMIN000018461,

⁴⁵ NCT02639793, NCT01913522, NCT03008811, NCT02611869, NCT03044951, UMIN000022272, ACTRN12615000967583, UMIN000018461

NCT01456949, NCT02294929, NCT00889681, NCT02588183, NCT02553239, NCT00821015, NCT03012841, NCT02213731, NCT02998866

NCT01456949, NCT00889681, NCT02639793, NCT02588183, NCT02553239, NCT00821015, NCT01913522, NCT03148392, NCT02611869, NCT03044951, NCT02998866, UMIN000022272, ACTRN12615000967583

⁴⁸ NCT02166723, NCT02294929, NCT03008811, NCT02213731, NCT03012841

La maggior parte degli studi valuta l'efficacia della crioablazione attraverso la ricorrenza della fibrillazione atriale e sintomi correlati, misurata con varie metodiche e dopo periodo di *blanking*, ovvero con *follow up* a partire da 1 anno.⁴⁹ Altri esiti studiati sono la funzionalità cardiaca (UMIN000022272 NCT02611869, NCT00821015), il successo della procedura definito come l'isolamento di 3/4 vene polmonari (NCT00821015, NCT00889681) e la quantità di farmaci per il dolore post-procedurale nel NCT03148392.

Uno studio randomizzato in tre bracci (NCT01913522) valuta se due cicli più brevi di crioablazione rispetto ad uno più lungo (standard) siano più efficaci e sicuri della radiofrequenza con cateteri irrigati. L'esito principale di sicurezza è costituito da tutti gli eventi avversi a un anno dalla procedura negli studi NCT01456949, NCT00889681, NCT02553239, NCT03044951, da danno cardiaco in UMIN000018461, mentre nello studio NCT02998866 viene considerato l'abbassamento della temperatura esofagea.

Altri impieghi

Sono stati inoltre individuati altri 6 studi che non rientravano nei PICOTS definiti dalla presente valutazione. Sono studi che sperimentano nuove modalità di utilizzo della crioablazione ovvero nuovi dosaggi (NCT02789358), tempi di procedura differenti (NCT02074566), numero delle crioablazioni necessarie per l'isolamento di ognuna delle vene polmonari (NCT02217254) oppure dispositivi diversi: criopallone in associazione al catetere Achieve Mapping nello studio NCT03003975 e Laserballoon® nel DRKS00012423. Lo studio UMIN000018901, invece valuta l'efficacia di crioablazione e radiofrequenza in pazienti sottoposti a terapia anticoagulante con Apixaban.

_

NCT02166723, NCT01456949, NCT02294929, NCT02785991, NCT00889681, NCT02639793, NCT02588183, NCT03012841, NCT03040037, NCT01913522, NCT03008811, NCT03044951, NCT02213731, NCT00821015, ACTRN12615000967583

DISCUSSIONE

Il criopallone viene proposto come tecnologia *one-shot* per l'ablazione transcatetere dei foci aritmogeni localizzati a livello delle vene polmonari in atrio sinistro. Rispetto all'ablazione con radiofrequenza, quella con criopallone permette di effettuare il criomappaggio, ovvero di identificare le zone da ablare mediante inibizione temporanea del segnale elettrico tramite crioenergia, e sembra essere associata a minori tempi di procedura, fluoroscopia e permanenza in atrio sinistro.

L'impiego del criopallone in sostituzione del catetere a radiofrequenza per l'isolamento delle vene polmonari è stato valutato in due impieghi diversi: fibrillazione atriale parossistica e fibrillazione atriale persistente.

La ricerca della letteratura ha portato all'inclusione di 31 studi (25 osservazionali controllati e 6 RCT), che hanno quasi esclusivamente valutato l'impiego del criopallone nel trattamento della fibrillazione atriale parossistica (quesito di ricerca n. 1, 29/31 studi). Complessivamente solo 8/31 studi hanno valutato il criopallone di seconda generazione.

È da sottolineare che gli studi inclusi sono prevalentemente su pazienti resistenti alla terapia antiaritmica e non precedentemente trattati con procedure ablative per fibrillazione atriale.

La Tabella 5 riporta in sintesi i risultati relativi agli esiti definiti a priori nei PICOTS di entrambi i quesiti. Come si può osservare, è stato possibile effettuare la metanalisi dei dati solo per alcuni esiti; per alcuni sono state prodotte sintesi quantitative o descrizioni narrative; per altri ancora non è stato possibile reperire alcun dato dagli studi inclusi.

La metanalisi relativa agli esiti di efficacia, sicurezza e *performance* tecnica per l'impiego nella **fibrillazione atriale parossistica** (29 studi su 11.635 pazienti di cui 5.396 trattati con criopallone e 5.914 con radiofrequenza) ha prodotto i seguenti risultati:

- non è stata rilevata una differenza statisticamente significativa a favore della crioablazione rispetto alla recidiva di sintomi di fibrillazione atriale (e tale dato viene confermato anche per il criopallone di seconda generazione);
- rispetto alla recidiva di sintomi imputabili a tachiaritmie atriali non viene rilevata una differenza statisticamente significativa tra le due tecniche anche se sembra intravedersi un segnale a favore di una maggiore efficacia della crioablazione (che tuttavia non viene confermata per i criopalloni di seconda generazione);
- i pazienti trattati con crioablazione sembrano avere minore necessità di ripetere la procedura ablativa anche se è stata rilevata eterogeneità nella stima dei singoli studi.

Riguardo agli accessi ospedalieri, alla necessità di cardioversione elettrica o farmacologica, all'assunzione di farmaci antiaritmici e alla riduzione della mortalità, i pochi dati disponibili non consentono di trarre conclusioni.

Per quel che riguarda gli esiti di sicurezza, la metanalisi ha evidenziato una differenza statisticamente significativa per l'effusione pericardica e il tamponamento cardiaco a favore del criopallone ma una maggiore incidenza di lesione del nervo frenico alla dimissione.

Infine, il tempo di procedura con criopallone risulta inferiore a quello con radiofrequenza ma, anche se la differenza è statisticamente significativa, è presente eterogeneità tra gli studi. Il tempo di fluoroscopia e l'isolamento delle vene polmonari risultano invece comparabili tra le due tecniche.

I risultati della metanalisi effettuata sono sovrapponibili a quelli della revisione sistematica di Cardoso e collaboratori [Cardoso 2016] relativamente a sicurezza e efficacia del criopallone (compresa la sotto-analisi per il criopallone di seconda generazione). Confrontando invece i risultati della presente metanalisi con quelli di Liu e collaboratori [Liu 2016] si evidenzia una differenza relativamente agli esiti di efficacia probabilmente dovuta al fatto che Liu e collaboratori hanno incluso anche studi con *follow up* inferiore ai 12 mesi.

Relativamente al secondo quesito di ricerca (impiego del criopallone in sostituzione del catetere a radiofrequenza nel trattamento della **fibrillazione atriale persistente**), sono stati reperiti solo due studi osservazionali (218 pazienti, di cui 109 trattati con criopallone e 109 con catetere a radiofrequenza), di cui solo uno ha valutato il criopallone di seconda generazione [Boveda 2016]. Non sono state evidenziate differenze relative alla recidiva di aritmie e alla ripetizione della procedura ablativa. Effetti avversi a livello cardiaco sono stati rilevati solo nei pazienti trattati con radiofrequenza, mentre non sono state evidenziate differenze per complicanze vascolari, ictus/TIA e lesione del nervo frenico. Entrambi gli studi riportano una differenza statisticamente significativa nel tempo di procedura a favore del criopallone ma risultati opposti relativamente al tempo di fluoroscopia.

I dati di sicurezza estrapolati dall'analisi delle banche dati di dispositivo-vigilanza confermano la tipologia di eventi avversi rilevati anche nell'ambito degli studi clinici.

Tra gli studi in corso, si conferma il maggiore interesse per l'impiego del criopallone nella fibrillazione atriale parossistica (16/21 degli studi inclusi). Risulta attualmente in studio anche un catetere circolare a crioenergia (CoolLoop®).

Tabella 5. Mappatura delle evidenze relative al confronto tra ablazione con criopallone o catetere a radiofrequenza

		QUESITO DI RICERCA 1. FA PAROSSISTICA 6 RCT e 23 osservazionali	QUESITO DI RICERCA 2. FA PERSISTENTE 2 studi osservazionali
EFFICACIA	Assenza di fibrillazione atriale	Metanalisi: 17 studi (4 RCT), no eterogeneità	2 studi osservazionali
	• Solo CB2	Metanalisi: 3 studi (no RCT), no eterogeneità	Dato non riportato negli studi
	Assenza di Tachiaritmie Atriali	Metanalisi: 16 studi (5 RCT), no eterogeneità	2 studi osservazionali
	• Solo CB2	Metanalisi: 7 studi (0 RCT), no eterogeneità	1 solo studio osservazionale
	Ripetizione della procedura ablativa	Metanalisi: 14 studi (4 RCT), presente eterogeneità	1 solo studio osservazionale
	Assunzione di AADs	Sintesi quantitativa: 4 studi (2 RCT)	Dato non riportato negli studi
	Accessi ospedalieri	Sintesi quantitativa: 2 studi osservazionali	Dato non riportato negli studi
	Cardioversione elettrica o farmacologica	Sintesi quantitativa: 1 studio osservazionale	Dato non riportato negli studi
	Mortalità a lungo termine	Sintesi quantitativa: 4 studi (1 RCT)	Dato non riportato negli studi
SICUREZZA	Effusione pericardica	Metanalisi: 10 studi (3 RCT), no eterogeneità	Sintesi narrativa, 2 studi osservazionali
	Tamponamento cardiaco	Metanalisi: 10 studi (2 RCT), no eterogeneità	Sintesi narrativa, 2 studi osservazionali
	Lesione del nervo frenico	Metanalisi: 16 studi (3 RCT), no eterogeneità	2 studi osservazionali
	Ictus/TIA	6 studi osservazionali	1 studio osservazionale
	Eventi tromboembolici	2 studi osservazionali	Dato non riportato negli studi
	Stenosi della vena polmonare	2 studi osservazionali	2 studi osservazionali (nessun caso riportato)
	Fistola atrio-esofagea	7 studi osservazionali (nessun caso)	2 studi osservazionali (nessun caso riportato)
	Morte	2 studi osservazionali (nessun caso)	2 studi osservazionali (nessun caso riportato)
PERFORMANCE TECNICA	Tempo di procedura	Metanalisi: 22 studi (5 RCT), presente eterogeneità	2 studi osservazionali
	Tempo di fluoroscopia	Metanalisi: 19 studi (3 RCT), presente eterogeneità	2 studi osservazionali, risultati discordanti
	Isolamento vene polm.	Sintesi quantitativa: 16 studi (2 RCT)	2 studi osservazionali
	Tempo di permanenza in atrio sinistro	Dato non riportato negli studi	Dato non riportato negli studi

Legenda tabella

Nessuna differenza tra crioablazione e ablazione con radiofrequenza

Dato a favore della crioablazione

Dato a favore della crioablazione ma presente eterogeneità tra gli studi

Dato a favore dell'ablazione con RF

CONCLUSIONI

In estrema sintesi si può concludere che l'ablazione transcatetere con criopallone, rispetto a quella eseguita con cateteri a radiofrequenza,

- non sembra essere associata a una maggiore efficacia in termini di assenza di fibrillazione atriale o di tachiaritmie atriali;
- è associata in modo significativo a un minore rischio di effusione pericardica e tamponamento cardiaco ma a un maggiore rischio di lesione del nervo frenico rilevato alla dimissione;
- presenta un tempo di procedura inferiore di circa 24 minuti ma non sembra essere associata a un minore tempo di fluoroscopia o a un migliore isolamento delle vene polmonari.

La maggior parte degli studi identificati ha valutato il criopallone di prima generazione nella fibrillazione atriale parossistica.

Al momento i costi del criopallone risultano superiori a quelli dei cateteri lineari a radiofrequenza.

REFERENZE

AETNA 2017 - AETNA. Clinical Policy Bullettin n. 0225. MAZE procedure. 2017. http://www.aetna.com/cpb/medical/data/200_299/0225.html (ultimo accesso ottobre 2017)

Akerstrom 2014 - Akerstrom F, Bastani H, Insulander P, Schwieler J, Arias MA, Jensen-Urstad M: Comparison of regular atrial tachycardia incidence after circumferential radiofrequency versus cryoballoon pulmonary vein isolation in real-life practice. *J Cardiovasc Electrophysiol.* 2014; 25:948-952.

Amin 2014 - Amin A, Kumar S, Kamalov G, Torres J, Tyler J, Rhodes T, Love CJ, Houmsse M, Augostini RS, Weiss R, Daoud EG, Hummel JD, Kalbfleisch S: Real life cost expenditure of cryoablation versus radiofrequency ablation for paroxysmal atrial fibrillation. *Heart Rhythm.* 2014; 11(Suppl 1):S289-S290.

Andrade 2011 - Andrade JG, Khairy P, Guerra PG, Deyell MW, Rivard L, Macle L, Thibault B, Talajic M, Roy D, Dubuc M. Efficacy and safety of cryoballoon ablation for atrial fibrillation: a systematic review of published studies. *Heart Rhythm.* 2011 Sep;8(9):1444-1451.

Aryana 2015 - Aryana A, Singh SM, Kowalski M, Pujara DK, Cohen AI, Singh SK, Aleong RG, Banker RS, Fuenzalida CE, Prager NA, Bowers MR, D'Avila A: O'Neill PG: Acute and long-term outcomes of catheter ablation of atrial fibrillation using the second-generation cryoballoon versus open-irrigated radiofrequency: A multicenter experience. *J Cardiovasc Electrophysiol.* 2015; 26:832-839.

Aryana 2016 - Aryana A, Singh SM, Mugnai G, de Asmundis C, Kowalski M, Pujara DK, et al. Pulmonary vein reconnection following catheter ablation of atrial fibrillation using the second-generation cryoballoon versus open-irrigated radiofrequency: results of a multicenter analysis. *Journal of interventional cardiac electrophysiology: an international journal of arrhythmias and pacing.* 2016; 47(3):341-348.

ASERNIPS 2004 - Australian Safety and Efficacy Register of New Interventional Procedures - Surgical. Intraoperative ablation for the treatment of atrial fibrillation. 2004.

BCBS Hawaii 2012 - Blue Cross Blue Shield of Hawaii. Catheter Ablation of the Pulmonary Veins as Treatment for Atrial Fibrillation. 2012.

BCBS Idaho 2014 - Blue Cross Blue Shield of Idaho. Catheter Ablation as Treatment for Atrial Fibrillation. 2014.

BCBS of Kansas 2015 - Blue Cross Blue Shield of Kansas. Catheter Ablation as Treatment for Atrial Fibrillation. 2015.

BCBS Western New York 2016 - Blue Cross Blue Shield Western New York. Protocol. Catheter Ablation as Treatment for Atrial Fibrillation. 2016.

https://www.bcbswny.com/content/dam/COMMON/Provider/Protocols/C/prov_prot_20219.pdf (ultimo accesso ottobre 2017).

Benguria-Arrate 2014 - Benguria-Arrate G, Gutiérrez-Ibarluzea I, Galnares-Cordero L. Crio-ablación en la fibrilación auricular con catéter Arctic-Front. Ministerio de Sanidad, Servicios Sociales e Igualdad. Servicio de Evaluación de Tecnologías Sanitarias del País Vasco; 2014. Informes de Evaluación de Tecnologías Sanitarias: OSTEBA.

Boveda 2016 - Boveda S, Providencia R, Defaye P, Pavin D, Cebron JP, Anselme F, et al. Outcomes after cryoballoon or radiofrequency ablation for persistent atrial fibrillation: a multicentric propensity-score matched study. *Journal of interventional cardiac electrophysiology: an international journal of arrhythmias and pacing.* 2016; 47(2):133-142.

Buiatti 2017 - Buiatti A, von Olshausen G, Barthel P, Schneider S, Luik A, Kaess B, Laugwitz KL, Hoppmann P. Cryoballoon vs. radiofrequency ablation for paroxysmal atrial fibrillation: an updated meta-analysis of randomized and observational studies. *Europace*. 2017 Mar 1; 19(3):378-384.

Capital Blue 2016 - Capital Blue. Medical Policy. Catheter ablation of the pulmonary veins as treatment of atrial fibrillation. 2016.

Cardoso 2016 - Cardoso R, Mendirichaga R, Fernandes G, Healy C, Lambrakos LK, Viles-Gonzalez JF, Goldberger JJ, Mitrani RD. Cryoballoon versus Radiofrequency Catheter Ablation in Atrial Fibrillation: A Meta-Analysis. *J Cardiovasc Electrophysiol*. 2016 Oct; 27(10):1151-1159.

Chen 2017a - Chen YH, Lu ZY, Xiang Y, Hou JW, Wang Q, Lin H, Li YG. Cryoablation vs. radiofrequency ablation for treatment of paroxysmal atrial fibrillation: a systematic review and meta-analysis. *Europace*. 2017 May 1; 19(5):784-794.

Chen 2017b - Chen CF, Gao XF, Duan X, Chen B, Liu XH, Xu YZ. Comparison of catheter ablation for paroxysmal atrial fibrillation between cryoballoon and radiofrequency: a meta-analysis. *J Interv Card Electrophysiol.* 2017 Apr; 48(3):351-366.

Cheng 2015 - Cheng X, Hu Q, Zhou C, Liu LQ, Chen T, Liu Z, Tang X. The long-term efficacy of cryoballoon vs irrigated radiofrequency ablation for the treatment of atrial fibrillation: A meta-analysis. *Int J Cardiol.* 2015 Feb 15; 181:297-302.

Chierchia 2010 - Chierchia GB, Capulzini L, Droogmans S, Sorgente A, Sarkozy A, Müller-Burri A, Paparella G, de Asmundis C, Yazaki Y, Kerkhove D, Van Camp G, Brugada P. Pericardial effusion in atrial fibrillation ablation: a comparison between cryoballoon and radiofrequency pulmonary vein isolation. *Europace*. 2010 Mar; 12(3):337-341.

Ciconte 2015 - Ciconte G, Baltogiannis G, de Asmundis C, Sieira J, Conte G, Di Giovanni G, Saitoh Y, Irfan G, Mugnai G, Hunuk B, Chierchia GB, Brugada P: Circumferential pulmonary vein isolation as index procedure for persistent atrial fibrillation: A comparison between radiofrequency catheter ablation and second-generation cryoballoon ablation. *Europace*. 2015; 17:559-565.

Davies 2016 - Davies AJ, Jackson N, Barlow M, Leitch J. Long Term Follow up of Pulmonary Vein Isolation Using Cryoballoon Ablation. *Heart, lung & circulation*. 2016; 25(3):290-295

Defaye 2010 - Defaye P, Kane A, Jacon P, Mondesert B. Cryoballoon for pulmonary vein isolation: Is it better tolerated than radiofrequency? Retrospective study comparing the use of analgesia and sedation in both ablation techniques. *Arch Cardiovasc Dis.* 2010 Jun-Jul; 103(6-7):388-393.

Deiss S, Metzner A, Ouyang F, Tilz RR, Mathew S, Lemes C, et al. Incidence of Significant Delayed Esophageal Temperature Drop After Cryoballoon-Based Pulmonary Vein Isolation. *Journal of cardiovascular electrophysiology.* 2016; 27(8):913-917.

Dulac 2014 - Dulac A, Sarrazin J, Nault I, O'Hara G, Philippon F, Molin F, Blier L, Champagne J: Comparison of pulmonary vein isolation using cryoballoon artic front advance versus contact force-guided radiofrequency for paroxysmal atrial fibrillation. *Can J Cardiol.* 2014; 30(Suppl 1): S287-S288.

East 2017 - East C, Phan T, Filardo G, Franklin J, Donsky A, Wheelan KR, et al. Repeat ablation and hospitalization following cryoballoon ablation of atrial fibrillation at a single tertiary medical center. *Proceedings* (Baylor University Medical Center). 2017; 30(1):3-6.

Ferretto 2015 - Ferretto S, Leoni L, Dalla Valle C, Migliore F, De LazzariM, Siciliano M, SilvanoM, Zorzi A, Iliceto S, Bertaglia E: Head to head comparison between radiofrequency and second generation cryoballoon catheter ablation for paroxysmal atrial fibrillation. A prospective controlled study. *Europace*. 2015; 17(Suppl 3):113.

Flusso Consumi 2016 - http://www.salute.gov.it/portale/temi/p2_4.jsp?area=dispositivi-medici (ultimo accesso ottobre 2017) (accesso con credenziali)

Gaita 2011 - Gaita F, Leclercq JF, Schumacher B, Scaglione M, Toso E, Halimi F, Schade A, Froehner S, Ziegler V, Sergi D, Cesarani F, Blandino A. Incidence of silent cerebral thromboembolic lesions after atrial fibrillation ablation may change according to technology used: comparison of irrigated radiofrequency, multipolar nonirrigated catheter and cryoballoon. *J Cardiovasc Electrophysiol.* 2011 Sep; 22(9):961-968.

Garg 2016 - Garg J, Chaudhary R, Palaniswamy C, Shah N, Krishnamoorthy P, Bozorgnia B, Natale A. Cryoballoon versus Radiofrequency Ablation for Atrial Fibrillation: A Meta-analysis of 16 Clinical Trials. *J Atr Fibrillation*. 2016 Oct 31; 9(3):1429.

Giacomino 2017 - Giacomino BD, Worden N, Marchigiani R, Keech J, Giudici MC. Pericardial-esophageal fistula complicating cryoballoon ablation for refractory atrial fibrillation. *HeartRhythm case reports*. 2017; 3(1):2-6.

González 2015 - González JL, Galizio N, Palazzo AA, Robles F, Carnero G, Mysuta M. Crioablación con balón en fibrilación auricular paroxística. Experiencia inicial. *Rev Argent Cardiol*. 2015; 83:429-434.

Guhl 2016a - Guhl EN, Siddoway D, Adelstein E, Voigt A, Saba S, Jain SK. Efficacy of Cryoballoon Pulmonary Vein Isolation in Patients with Persistent Atrial Fibrillation. *Journal of cardiovascular electrophysiology*. 2016; 27(4):423-427.

Guhl 2016b - Guhl EN, Siddoway D, Adelstein E, Bazaz R, Mendenhall GS, Nemec J, *et al.* Incidence and Predictors of Complications During Cryoballoon Pulmonary Vein Isolation for Atrial Fibrillation. *Journal of the American Heart Association*. 2016; 5(7).

HAS 2016 - Haute Autorité de Santé. Argumentaire: Évaluation de l'ablation endocavitaire des tachycardies par cryothérapie. Décembre 2016. Disponibile al seguente indirizzo: https://www.has-sante.fr/portail/jcms/c 2653644/fr/evaluation-de-l-ablation-endocavitaire-destachycardies-par-cryotherapie (ultimo accesso ottobre 2017)

He 2016 - He X, Chen Y, Zhou Y, Huang Y, He J. One-Year Clinical Outcome of Pulmonary Vein Isolation Using the Second-Generation Cryoballoon: A Meta-Analysis. *Pacing Clin Electrophysiol*. 2016 Feb; 39(2):182-189.

Health Net 2016 - Health Net. National medical policy. Catheter ablation for Atrial Fibrillation. Luglio 2016. https://www.healthnet.com/# (ultimo accesso ottobre 2017)

HealthPACT 2014 - Health Policy Advisory Committee on Technology. Technology Brief. Catheter ablation for atrial fibrillation. July 2014.

Herm 2013 - Herm J, Fiebach JB, Koch L, Kopp UA, Kunze C, Wollboldt C, Brunecker P, Schultheiss HP, Schirdewan A, Endres M, Haeusler KG. Neuropsychological effects of MRI-detected brain lesions after left atrial catheter ablation for atrial fibrillation: long-term results of the MACPAF study. *Circ Arrhythm Electrophysiol.* 2013 Oct; 6(5):843-50.

Herrera Siklódy 2011 - Herrera Siklódy C, Deneke T, Hocini M, Lehrmann H, Shin DI, Miyazaki S, Henschke S, Fluegel P, Schiebeling-Römer J, Bansmann PM, Bourdias T, Dousset V, Haïssaguerre M, Arentz T. Incidence of asymptomatic intracranial embolic events after pulmonary vein isolation: comparison of different atrial fibrillation ablation technologies in a multicenter study. *J Am Coll Cardiol.* 2011 Aug 9; 58(7):681-688.

Herrera Siklódy 2012 - Herrera Siklody C, Arentz T, Minners J, Jesel L, Stratz C, Valina CM, Weber R, Kalusche D, Toti F, Morel O, Trenk D. Cellular damage, platelet activation, and inflammatory response after pulmonary vein isolation: A randomized study comparing radiofrequency ablation with cryoablation. *Heart Rhythm.* 2012; 9:189-196.

Hiczkiewicz 2017 - Hiczkiewicz J, Kozluk E, Lojewska K, Budzianowski J, Zimolag R, Grydz L, et al. Takotsubo syndrome after pericardial tamponade following cryoballoon ablation of pulmonary veins for paroxysmal atrial fibrillation and complicated by right coronary artery thrombosis. *Cardiology journal.* 2017; 24(2):216.

Hoffman 2010 - Hofmann R, Hönig S, Leisch F, Steinwender C. Pulmonary vein isolation with Mesh Ablator versus cryoballoon catheters: 6-month outcomes. *J Interv Card Electrophysiol.* 2010 Dec; 29(3):179-185.

Hunter 2015 - Hunter RJ, Baker V, Finlay MC, Duncan ER, Lovell MJ, Tayebjee MH, Ullah W, Siddiqui MS, Mc LA, Richmond L, Kirkby C, Ginks MR, Dhinoja M, Sporton S, Earley MJ, Schilling RJ: Point-by-point radiofrequency ablation versus the cryoballoon or a novel combined approach: A randomized trial comparing 3 methods of pulmonary vein isolation for paroxysmal atrial fibrillation (The Cryo Versus RF Trial). *J Cardiovasc Electrophysiol.* 2015; 26:1307-1314.

Irfan 2016 - Irfan G, de Asmundis C, Mugnai G, Poelaert J, Verborgh C, Umbrain V, *et al.* One-year *follow up* after second-generation cryoballoon ablation for atrial fibrillation in a large cohort of patients: a single-centre experience. *Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2016; 18(7):987-993.*

Israel 2004 - Israel CW, Grönefeld G, Ehrlich JR, Li YG, Hohnloser SH. Long-term risk of recurrent atrial fibrillation as documented by an implantable monitoring device: implications for optimal patient care. *J Am Coll Cardiol.* 2004; 43(1):47.

January 2014 - January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, Conti JB, Ellinor PT, Ezekowitz MD, Field ME, Murray KT, Sacco RL, Stevenson WG, Tchou PJ, Tracy CM, Yancy CW; ACC/AHA Task Force Members. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. *Circulation*. 2014 Dec 2; 130(23):2071-2104.

Jiang 2017 - Jiang J, Li J, Zhong G, Jiang J. Efficacy and safety of the second-generation cryoballoons versus radiofrequency ablation for the treatment of paroxysmal atrial fibrillation: a systematic review and meta-analysis. *J Interv Card Electrophysiol.* 2017 Jan; 48(1):69-79.

Jourda 2014 - Jourda F, Providencia R, Marijon E, Bouzeman A, Hireche H, Khoueiry Z, Cardin C, Combes N, Combes S, Boveda S, Albenque JP. Contact-force guided radiofrequency vs. second-generation balloon cryotherapy for pulmonary vein isolation in patients with paroxysmal atrial fibrillation-a prospective evaluation. *Europace*. 2015 Feb; 17(2):225-231.

Jourda 2015 - Jourda F, Providencia R, Marijon E, Bouzeman A, Hireche H, Khoueiry Z, Cardin C, Combes N, Combes S, Boveda S, Albenque JP: Contact-force guided radiofrequency vs. second-generation balloon cryotherapy for pulmonary vein isolation in patients with paroxysmal atrial fibrillation—A prospective evaluation. *Europace*. 2015; 17:225-231.

Juliá 2014 - Juliá J, Chierchia GB, de Asmundis C, Mugnai G, Sieira J, Ciconte G, Di Giovanni G, Conte G, Baltogiannis G, Saitoh Y, Wauters K, Irfan G, Brugada P. Regular atrial tachycardias following pulmonary vein isolation for paroxysmal atrial fibrillation: a retrospective comparison between the cryoballoon and conventional focal tip radiofrequency techniques. *J Interv Card Electrophysiol.* 2015 Mar; 42(2):161-169.

Juliá 2015 - Juliá J, Chierchia GB, de Asmundis C, Mugnai G, Sieira J, Ciconte G, Di Giovanni G, Conte G, Baltogiannis G, Saitoh Y, Wauters K, Irfan G, Brugada P: Regular atrial tachycardias following pulmonary vein isolation for paroxysmal atrial fibrillation: A retrospective comparison between the cryoballoon and conventional focal tip radiofrequency techniques. *J Interv Card Electrophysiol.* 2015; 42:161-169.

Kardos 2016 - Kardos A, Kis Z, Som Z, Nagy Z, Foldesi C. Two-Year *Follow up* after Contact Force Sensing Radiofrequency Catheter and Second-Generation Cryoballoon Ablation for Paroxysmal Atrial Fibrillation: A Comparative Single Centre Study. *BioMed research international*. 2016:6495753.

Kasper 2016 - Kasper L, Gross-Sondej I, Machalica B, Soja J, Pawlik W, Sladek K. Hemoptysis and lung disease as a manifestation of pulmonary vein stenosis after cryoballoon catheter ablation for atrial fibrillation. *Polskie Archiwum Medycyny Wewnetrznej*. 2016; 126(1-2):94-96.

Khoueiry 2016 - Khoueiry Z, Albenque JP, Providencia R, Combes S, Combes N, Jourda F, Sousa PA, Cardin C, Pasquie JL, Cung TT, Massin F, Marijon E, Boveda S: Outcomes after cryoablation vs. radiofrequency in patients with paroxysmal atrial fibrillation: Impact of pulmonary veins anatomy. *Europace* 2016, 18:1343-1351.

Kirchhof 2016 - Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. *Eur Heart J.* 2016 Oct 7; 37(38):2893-2962.

Kiss 2014 - Kiss A, Nagy-Baló E, Sándorfi G, Edes I, Csanádi Z. Cerebral microembolization during atrial fibrillation ablation: comparison of different single-shot ablation techniques. *Int J Cardiol.* 2014 Jun 15; 174(2):276-281.

Knecht 2014 - Knecht S, Sticherling C, von Felten S, Conen D, Schaer B, Ammann P, Altmann D, Osswald S, Kuhne M: Long-term comparison of cryoballoon and radiofrequency ablation of paroxysmal atrial fibrillation: A propensity score matched analysis. *Int J Cardiol.* 2014; 176:645-650.

Koch 2014 - Koch L, Haeusler KG, Herm J, Safak E, Fischer R, Malzahn U, Werncke T, Heuschmann PU, Endres M, Fiebach JB, Schultheiss HP, Schirdewan A. Mesh ablator vs. cryoballoon pulmonary vein ablation of symptomatic paroxysmal atrial fibrillation: results of the MACPAF study. Europace. 2012 Oct;14(10):1441-9.

Koektuerk 2016 - Koektuerk B, Yorgun H, Koektuerk O, Turan CH, Aksoy MN, Turan RG, et al. Cryoballoon ablation for pulmonary vein isolation in patients with atrial fibrillation: preliminary results using novel short-tip cryoballoon. *Journal of interventional cardiac electrophysiology: an international journal of arrhythmias and pacing.* 2016; 47(1):91-98.

Koektuerk 2017 - Koektuerk B, Yorgun H, Koch A, Turan CH, Keskin K, Dahmen A, et al. Pulmonary vein isolation in patients with paroxysmal atrial fibrillation: Long-term clinical outcomes with first- and second-generation cryoballoons. *Herz.* 2017; 42(1):91-97.

Kojodjojo 2010 - Kojodjojo P, O'Neill MD, Lim PB, Malcolm-Lawes L, Whinnett ZI, Salukhe TV, Linton NW, Lefroy D, Mason A, Wright I, Peters NS, Kanagaratnam P, Davies DW: Pulmonary venous isolation by antral ablation with a large cryoballoon for treatment of paroxysmal and persistent atrial fibrillation: Medium-term outcomes and non-randomised comparison with pulmonary venous isolation by radiofrequency ablation. *Heart*. 2010; 96:1379-1384.

Kuck 2016 - Kuck KH, Brugada J, Furnkranz A, Metzner A, Ouyang F, Chun KR, Elvan A, Arentz T, Bestehorn K, Pocock SJ, Albenque JP, Tondo C: Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. *N Engl J Med.* 2016; 374:2235-2245.

Kuhne 2010 - Kühne M, Suter Y, Altmann D, Ammann P, Schaer B, Osswald S, Sticherling C. Cryoballoon versus radiofrequency catheter ablation of paroxysmal atrial fibrillation: biomarkers

of myocardial injury, recurrence rates, and pulmonary vein reconnection patterns. *Heart Rhythm.* 2010 Dec; 7(12):1770-1776.

Kumar 2016 - Kumar K, Zimetbaum PJ, Saperia GM. Overview of atrial fibrillation. UpToDate 2016.

Lemes 2016 - Lemes C, Wissner E, Lin T, Mathew S, Deiss S, Rillig A, et al. One-year clinical outcome after pulmonary vein isolation in persistent atrial fibrillation using the second-generation 28 mm cryoballoon: a retrospective analysis. *Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.* 2016; 18(2):201-205.

Linhart 2009 - Linhart M, Bellmann B, Mittmann-Braun E, Schrickel JW, Bitzen A, Andrié R, Yang A, Nickenig G, Lickfett L, Lewalter T. Comparison of cryoballoon and radiofrequency ablation of pulmonary veins in 40 patients with paroxysmal atrial fibrillation: a case-control study. *J Cardiovasc Electrophysiol.* 2009 Dec; 20(12):1343-1348.

Liu 2016 - Liu XH, Chen CF, Gao XF, Xu YZ. Safety and Efficacy of Different Catheter Ablations for Atrial Fibrillation: A Systematic Review and Meta-Analysis. *Pacing Clin Electrophysiol.* 2016 Aug; 39(8):883-899.

Luik 2015 - Luik A, Radzewitz A, Kieser M, Walter M, Bramlage P, Hormann P, Schmidt K, Horn N, Brinkmeier-Theofanopoulou M, Kunzmann K, Riexinger T, Schymik G, Merkel M, Schmitt C: Cryoballoon versus open irrigated radiofrequency ablation in patients with paroxysmal atrial fibrillation: The prospective, randomized, controlled, noninferiority freeze AF study. *Circulation*. 2015; 132:1311-1319.

Luik 2017 - Luik A, Kunzmann K, Hormann P, Schmidt K, Radzewitz A, Bramlage P, et al. Cryoballoon vs. open irrigated radiofrequency ablation for paroxysmal atrial fibrillation: long-term FreezeAF outcomes. *BMC cardiovascular disorders*. 2017; 17(1):135.

Maagh 2013 - Maagh P, Butz T, Plehn G, Christoph A, Meissner A. Pulmonary vein isolation in 2012: is it necessary to perform a time consuming electrophysical mapping or should we focus on rapid and safe therapies? A retrospective analysis of different ablation tools. *Int J Med Sci.* 2013; 10(1):24-33.

Makimoto 2017 - Makimoto H, Kelm M, Shin DI, Blockhaus C. Breakage of a Circular Catheter Wedged in a Right Pulmonary Vein during Cryoballoon Pulmonary Vein Isolation. *Internal medicine (Tokyo, Japan)*. 2017; 56(9):1057-1059.

Malmborg 2013 - Malmborg H, Lönnerholm S, Blomström P, Blomström-Lundqvist C. Ablation of atrial fibrillation with cryoballoon or duty-cycled radiofrequency pulmonary vein ablation catheter: a randomized controlled study comparing the clinical outcome and safety; the AF-COR study. *Europace*. 2013 Nov; 15(11):1567-1573.

Malmborg 2013a - Malmborg H, Christersson C, Lönnerholm S, Blomström-Lundqvist C. Comparison of effects on coagulation and inflammatory markers using a duty-cycled bipolar and unipolar radiofrequency pulmonary vein ablation catheter vs. a cryoballoon catheter for pulmonary vein isolation. *Europace*. 2013 Jun; 15(6):798-804.

Maltoni 2017 - Maltoni S, Camerlingo M, Negro A, Pecoraro V, Trimaglio F. Metodologia per le valutazioni rapide di tecnologie sanitarie. Agenzia sanitaria e sociale regionale. Regione Emilia-Romagna. Luglio 2017.

http://assr.regione.emilia-romagna.it/it/ricerca-innovazione/governo-tecnologie-sanitarie/attivita-dispositivi-medici/metodologia-hta/valutazioni-rapide (ultimo accesso ottobre 2017)

Mandell 2014 - Mandell J, Amico F, Parekh S, Snow J, Germano J, Cohen TJ. Early experience with the cryoablation balloon procedure for the treatment of atrial fibrillation by an experienced radiofrequency catheter ablation center. *J Invasive Cardiol.* 2013 Jun; 25(6):288-292.

Matsuda 2017 - Matsuda J, Miyazaki S, Nakamura H, Taniguchi H, Kajiyama T, Hachiya H, et al. Pulmonary Vein Stenosis After Second-Generation Cryoballoon Ablation. *Journal of cardiovascular electrophysiology*. 2017; 28(3):298-303.

Metzner 2016 - Metzner A, Heeger CH, Wohlmuth P, Reissmann B, Rillig A, Tilz RR, et al. Two-year outcome after pulmonary vein isolation using the second-generation 28-mm cryoballoon: lessons from the bonus freeze protocol. *Clinical research in cardiology: official journal of the German Cardiac Society.* 2016; 105(1):72-78.

Miyazaki 2016 - Miyazaki S, Kuroi A, Hachiya H, Nakamura H, Taniguchi H, Ichihara N, et al. Early recurrence after pulmonary vein isolation of paroxysmal atrial fibrillation with different ablation technologies - prospective comparison of radiofrequency vs. second-generation cryoballoon ablation. *Circulation journal: official journal of the Japanese Circulation Society.* 2016; 80(2):346-353

Mokrani 2012 - Mokrani BO, Sarrazin JF, Champagne J, Nault I, Zannad N, Barthez O, Philippon F, Blier L, Molin F, O'Hara G. Prospective study comparing duty-cycled bipolar and unipolar radiofrequency to pulmonary vein isolation by point-by-point ablation and cryoballoon ablation. *Heart Rhythm.* 2012; 9(Suppl 1):S416.

Mugnai 2014 - Mugnai G, Chierchia GB, de Asmundis C, Sieira-Moret J, Conte G, Capulzini L, Wauters K, Rodriguez-Manero M, Di Giovanni G, Baltogiannis G, Ciconte G, Saitoh Y, Julia J, Brugada P. Comparison of pulmonary vein isolation using cryoballoon versus conventional radiofrequency for paroxysmal atrial fibrillation. *Am J Cardiol.* 2014; 113:1509-1513.

Mugnai 2015 - Mugnai G, Irfan G, de Asmundis C, Ciconte G, Saitoh Y, Hunuk B, Velagic V, Stroker E, Rossi P, Capulzini L, Brugada P, Chierchia GB. Complications in the setting of percutaneous atrial fibrillation ablation using radiofrequency and cryoballoon techniques: A single-center study in a large cohort of patients. *Int J Cardiol*. 2015 Oct 1; 196:42-49.

Mugnai 2016 - Mugnai G, de Asmundis C, Velagic V, Hunuk B, Stroker E, Wauters K, et al. Phrenic nerve injury during ablation with the second-generation cryoballoon: analysis of the temperature drop behaviour in a large cohort of patients. *Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.* 2016; 18(5):702-709.

Mugnai 2017 - Mugnai G, Longobardi M, Dore R, Negro MC, Ottaviano L, Storti C. A particular case of transient ST elevation during cryoballoon ablation of atrial fibrillation. Europace: *European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.* 2017; 19(5):794.

Nagy-Balò 2013 - Nagy-Baló E, Tint D, Clemens M, Beke I, Kovács KR, Csiba L, Édes I, Csanádi Z. Transcranial measurement of cerebral microembolic signals during pulmonary vein isolation: a comparison of two ablation techniques. *Circ Arrhythm Electrophysiol.* 2013 Jun; 6(3):473-80.

Neumann 2010 - Neumann T, Kuniss M, Conradi G, Janin S, Berkowitsch A, Wojcik M, Rixe J, Erkapic D, Zaltsberg S, Rolf A, Bachmann G, Dill T, Hamm CW, Pitschner HF. MEDAFI-Trial (Microembolization during ablation of atrial fibrillation): comparison of pulmonary vein isolation using cryoballoon technique vs. radiofrequency energy. *Europace*. 2011 Jan; 13(1):37-44.

NICE 2005 - National Institute for Clinical Excellence. *Cryoablation for atrial fibrillation in association with other cardiac surgery*. Interventional procedures guidance 123. 2005.

NICE 2012 - National Institute for Clinical Excellence. *Percutaneous balloon cryoablation for pulmonary vein isolation in atrial fibrillation.* Interventional procedures guidance 427. 2012.

Okumura 2016 - Okumura K, Matsumoto K, Kobayashi Y, Nogami A, Hokanson RB, Kueffer F. Safety and Efficacy of Cryoballoon Ablation for Paroxysmal Atrial Fibrillation in Japan- Results from the Japanese Prospective Post-Market Surveillance Study. *Circulation journal: official journal of the Japanese Circulation Society.* 2016; 80(8):1744-1749.

Ontario 2006 - Ontario Medical Advisory Secretariat. Ablation for atrial fibrillation: an evidence-based analysis. *Ontario Health Technology Assessment Series*. 2006; 6(7).

Padeletti 2017 - Padeletti L, Curnis A, Tondo C, Lunati M, Porcellini S, Verlato R, et al. Pulmonary Vein Isolation with the Cryoballoon Technique: Feasibility, Procedural Outcomes, and Adoption in the Real World: Data from One Shot Technologies TO Pulmonary Vein Isolation (1STOP) Project. Pacing and clinical electrophysiology: *PACE*. 2017; 40(1):46-56.

Passman 2017 - Passman R, Knight BP, Saperia GM. *Catheter ablation to prevent recurrent atrial fibrillation: Technical considerations.* UpToDate 2017.

Paylos 2016a - Paylos JM, Azcona L, Lacal L, Paradela M, Cilleros C, Del-Campo I, et al. First and second-generation cryoballoon ablation efficacy restoring and maintaining sinus rhythm in patients electrically selected and treated for long-standing persistent atrial fibrillation after acute complete electrical disconnection of pulmonary veins from the left atrium demonstrated. *Journal of atrial fibrillation*. 2016; 8(6):1399.

Paylos 2016b -Paylos JM, Morales A, Azcona L, Paradela M, Yague R, Gomez-Guijarro F, et al. Long-term evolution of patients treated for paroxysmal atrial fibrillation with first and second generation cryoballoon catheter ablation with a prospective protocol guided by complete bidirectional left atrium-pulmonary veins disconnection after adenosine as main target end point to achieved. Seven years follow up of patients with a rough estimation profile of low ALARMEC score. A single center report. *Journal of atrial fibrillation*. 2016; 8(6):1400.

Perez-Castellano 2014 - Perez-Castellano N, Fernandez-Cavazos R, Moreno J, Canadas V, Conde A, Gonzalez-Ferrer JJ, Macaya C, Perez-Villacastin J. The COR trial: A randomized study with continuous rhythm monitoring to compare the efficacy of cryoenergy and radiofrequency for pulmonary vein isolation. *Heart Rhythm.* 2014; 11:8-14.

Pokushalov 2013 - Pokushalov E, Romanov A, Artyomenko S, Baranova V, Losik D, Bairamova S, Karaskov A, Mittal S, Steinberg JS. Cryoballoon versus radiofrequency for pulmonary vein reisolation after a failed initial ablation procedure in patients with paroxysmal atrial fibrillation. *J Cardiovasc Electrophysiol.* 2013 Mar; 24(3):274-279.

Pott 2017 - Pott A, Messemer M, Petscher K, Iturbe-Orbe M, Bothner C, Rottbauer W, *et al.* Clinical outcome of 2nd generation cryoballoon pulmonary vein isolation in patients over 75 years of age. *Journal of cardiology.* 2017; 69(1):24-29.

Providencia 2017 - Providencia R, Defaye P, Lambiase PD, Pavin D, Cebron JP, Halimi F, et al. Results from a multicentre comparison of cryoballoon vs. radiofrequency ablation for paroxysmal atrial fibrillation: is cryoablation more reproducible? Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2017; 19(1):48-57.

Rodgers 2008 - Rodgers M, McKenna C, Palmer S, Chambers D, Van Hout S, Golder S, et al. Curative catheter ablation in atrial fibrillation and typical atrial flutter: systematic review and economic evaluation. *Health Technol Assess.* 2008; 12(34).

Sacco 2013 - Sacco RL, Kasner SE, Broderick JP, *et al.* An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2013 Jul; 44(7):2064-2089.

Saitoh 2016 - Saitoh Y, Stroker E, Irfan G, Mugnai G, Ciconte G, Hunuk B, *et al.* Fluoroscopic position of the second-generation cryoballoon during ablation in the right superior pulmonary vein as a predictor of phrenic nerve injury. *Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.* 2016; 18(8):1179-1186.

Sauren 2009 - Sauren LD, VAN Belle Y, DE Roy L, Pison L, LA Meir M, VAN DER Veen FH, Crijns HJ, Jordaens L, Mess WH, Maessen JG. Transcranial measurement of cerebral microembolic signals during endocardial pulmonary vein isolation: comparison of three different ablation techniques. *J Cardiovasc Electrophysiol.* 2009 Oct; 20(10):1102-1107.

Schmidt 2012 - Schmidt M, Marschang H, Clifford S, Harald R, Guido R, Oliver T, Johannes B, Daccarett M. Trends in inflammatory biomarkers during atrial fibrillation ablation across different catheter ablation strategies. *Int J Cardiol.* 2012 Jun 28; 158(1):33-38.

Schmidt 2013 - Schmidt B, Gunawardene M, Krieg D, Bordignon S, Fürnkranz A, Kulikoglu M, Herrmann W, Chun KR. A prospective randomized single-center study on the risk of asymptomatic cerebral lesions comparing irrigated radiofrequency current ablation with the cryoballoon and the laser balloon. *J Cardiovasc Electrophysiol*. 2013 Aug; 24(8):869-874.

Schmidt 2014 - Schmidt M, Dorwarth U, Andresen D, Brachmann J, Kuck KH, Kuniss M, Lewalter T, Spitzer S, Willems S, Senges J, Jünger C, Hoffmann E. Cryoballoon versus RF ablation in paroxysmal atrial fibrillation: results from the German Ablation Registry. *J Cardiovasc Electrophysiol.* 2014 Jan; 25(1):1-7.

Schmidt 2016 - Schmidt M, Dorwarth U, Andresen D, Brachmann J, Kuck K, Kuniss M, Willems S, Deneke T, Tebbenjohanns J, Gerds-Li JH, Spitzer S, Senges J, Hochadel M, Hoffmann E. German ablation registry: Cryoballoon vs radiofrequency ablation in paroxysmal atrial fibrillation-one-year outcome data. *Heart Rhythm.* 2016; 13:836-844.

Scholz 2016 - Scholz E, Lugenbiel P, Schweizer PA, Xynogalos P, Seyler C, Zitron E, *et al.* Efficacy, high procedural safety and rapid optimization of cryoballoon atrial fibrillation ablation in the hands of a new operator. *Journal of atrial fibrillation*. 2016; 8(5):1341.

Skelly 2015 - Skelly A, Hashimoto R, Al-Khatib S, Sanders-Schmidler G, Fu R, Brodt E, McDonagh M. *Catheter ablation for treatment of atrial fibrillation*. Technology assessment. (Prepared by the Pacific Northwest Evidence-based Practice Center under Contract No. HHSA 290-2012-00014-I.) AHRQ Publication. Rockville, MD: Agency for Healthcare Research and Quality; April 2015.

Sorgente 2010 - Sorgente A, Chierchia GB, Capulzini L, Yazaki Y, Muller-Burri A, Bayrak F, Sarkozy A, de Asmundis C, Paparella G, Brugada B. Atrial fibrillation ablation: a single center comparison between remote magnetic navigation, cryoballoon and conventional manual pulmonary vein isolation. *Indian Pacing Electrophysiol J.* 2010 Dec 26; 10(11):486-495.

Squara 2015 - Squara F, Zhao A, Marijon E, Latcu DG, Providencia R, Di Giovanni G, Jauvert G, Jourda F, Chierchia GB, De Asmundis C, Ciconte G, Alonso C, Grimard C, Boveda S, Cauchemez B, Saoudi N, Brugada P, Albenque JP, Thomas O. Comparison between radiofrequency with contact force-sensing and second-generation cryoballoon for paroxysmal atrial fibrillation catheter ablation: A multicentre European evaluation. *Europace*. 2015; 17:718-724.

Stabile 2006 - Stabile G, Bertaglia E, Senatore G, De Simone A, Zoppo F, Donnici G, Turco P, Pascotto P, Fazzari M, Vitale DF. Catheter ablation treatment in patients with drug-refractory atrial fibrillation: a prospective, multi-centre, randomized, controlled study (Catheter Ablation For The Cure Of Atrial Fibrillation Study). *Eur Heart J.* 2006 Jan; 27(2):216-221.

Straube 2016 - Straube F, Dorwarth U, Ammar-Busch S, Peter T, Noelker G, Massa T, Kuniss M, Ewertsen NC, Chun KR, Tebbenjohanns J, Tilz R, Kuck KH, Ouarrak T, Senges J, Hoffmann E; FREEZE Cohort Investigators. First-line catheter ablation of paroxysmal atrial fibrillation: outcome of radiofrequency vs. cryoballoon pulmonary vein isolation. *Europace*. 2016 Mar; 18(3):368-375.

Takarada 2017 - Takarada K, Overeinder I, de Asmundis C, Stroker E, Mugnai G, de Regibus V, et al. Long-term outcome after second-generation cryoballoon ablation for paroxysmal atrial fibrillation. A 3-years follow up. *Journal of interventional cardiac electrophysiology: an international journal of arrhythmias and pacing.* 2017; 49(1):93-100.

Themistoklatis 2011 - Themistoclakis S, Tritto M, Bertaglia E, Berto P, Bongiorni MG, Catanzariti D, De Fabrizio G, De Ponti R, Grimaldi M, Pandozi C, Tondo C, Gulizia M. Catheter ablation of atrial fibrillation: Health Technology Assessment Report from the Italian Association of Arrhythmology and Cardiac Pacing (AIAC). *G Ital Cardiol (Rome)*. 2011 Nov; 12(11):726-776. Italian.

Tokutake 2017 - Tokutake K, Tokuda M, Ogawa T, Matsuo S, Yoshimura M, Yamane T. Pulmonary vein stenosis after second-generation cryoballoon ablation for atrial fibrillation. HeartRhythm case reports. 2017; 3(1):36-39.

Tonks 2016 - Tonks R, Sayed HT, Adams A, Smith WT. Cryoablation for the Treatment of Drug Refractory Symptomatic Atrial Fibrillation: A Regional Medical Center Experience. *Journal of atrial fibrillation*. 2016; 8(5):1334.

Tscholl 2016 - Tscholl V, Lsharaf AK, Lin T, Bellmann B, Biewener S, Nagel P, et al. Two years outcome in patients with persistent atrial fibrillation after pulmonary vein isolation using the second-generation 28-mm cryoballoon. *Heart rhythm.* 2016; 13(9):1817-1822.

Tse 2005 - Tse HF, Kwong YL, Lau CP. Transvenous cryoablation reduces platelet activation during pulmonary vein ablation compared with radiofrequency energy in patients with atrial fibrillation. *J Cardiovasc Electrophysiol*. 2005 Oct; 16(10):1064-1070.

Tzeis 2017 - Tzeis S, Pastromas S, Sikiotis A, Andrikopoulos G. Cryoballoon dysfunction indicated by abrupt temperature drop during atrial fibrillation ablation. *Europace: European pacing, arrhythmias, and cardiac electrophysiology: journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.* 2017; 19(5):768.

Van Brabandt 2012 - Van Brabandt H, Neyt M, Devos C. Catheter ablation of atrial fibrillation. Health Technology Assessment (HTA). Brussels: Belgian Health Care Knowledge Centre (KCE). 2012. KCE Report 184C. D/2012/10.273/57.

Voskoboninik 2017 - Voskoboinik A, Moskovitch JT, Harel N, Sanders P, Kistler PM, Kalman JM. Revisiting pulmonary vein isolation alone for persistent atrial fibrillation: A systematic review and meta-analysis. *Heart Rhythm.* 2017 May; 14(5):661-667.

Washington 2013 - Washington State Health Care Authority. Health Technology Assessment Program (HTA). Catheter Ablation Procedures for Supraventricular Tachyarrhythmia Including Atrial Flutter & Atrial Fibrillation. Final Evidence report. 2013.

Wasserlauf 2015 - Wasserlauf J, Pelchovitz DJ, Rhyner J, Verma N, Bohn M, Li Z, Arora R, Chicos AB, Goldberger JJ, Kim SS, Lin AC, Knight BP, Passman RS: Cryoballoon versus radiofrequency catheter ablation for paroxysmal atrial fibrillation. *Pacing Clin Electrophysiol*. 2015; 38:483-489.

Watanabe 2016 - Watanabe T, Hachiya H, Miyazaki S, Nakamura H, Taniguchi H, Iesaka Y. Recurrent and late-onset coronary spasms after cryoballoon ablation procedure in a patient with atrial fibrillation. *HeartRhythm case reports*. 2016; 2(5):421-424.

Wissner 2013 - Wissner E, Metzner A, Neuzil P, Petru J, Skoda J, Sediva L, Kivelitz D, Wohlmuth P, Weichet J, Schoonderwoerd B, Rausch P, Bardyszewski A, Tilz RR, Ouyang F, Reddy VY, Kuck KH. Asymptomatic brain lesions following laserballoon-based pulmonary vein isolation. *Europace*. 2014 Feb; 16(2):214-219.

Wolf 1991 - Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. *Stroke*. 1991 Aug; 22(8):983-988.

Xu 2014 - Xu J, Huang Y, Cai H, Qi Y, Jia N, Shen W, Lin J, Peng F, Niu W. Is cryoballoon ablation preferable to radiofrequency ablation for treatment of atrial fibrillation by pulmonary vein isolation? A meta-analysis. *PLoS One.* 2014 Feb 28; 9(2):e90323.

Zoni-Berisso 2013 - Zoni-Berisso M, Filippi A, Landolina M, Brignoli O, D'Ambrosio G, Maglia G, Grimaldi M, Ermini G. Frequency, patient characteristics, treatment strategies, and resource usage of atrial fibrillation (from the Italian Survey of Atrial Fibrillation Management [ISAF] study). *Am J Cardiol.* 2013 Mar 1; 111(5):705-711.

DISCLAIMER

Le valutazioni rapide forniscono informazioni sulle caratteristiche della tecnologia (e di eventuali comparatori), sul costo e sulle possibili implicazioni organizzative derivate dal suo utilizzo. Vengono illustrate brevemente la condizione clinica di impiego proposto e lo standard terapeutico e/o diagnostico di riferimento e viene fornita una stima della popolazione candidata all'uso della tecnologia in Emilia-Romagna. Sono reperiti, analizzati e sintetizzati i dati di letteratura disponibili su esiti di *performance* tecnica, efficacia clinica e sicurezza e vengono descritte le caratteristiche degli studi in corso.

Le valutazioni rapide prodotte dall'Agenzia sanitaria e sociale non contengono raccomandazioni per la pratica clinica o raccomandazioni relative a politiche di rimborso.

Il metodo utilizzato per il reperimento, l'analisi critica e la sintesi della letteratura disponibile, rifacendosi alla metodologia delle *rapid review*, non può essere considerata sistematica e esaustiva come quella di una revisione sistematica tradizionale.

APPENDICI

Appendice 1. Criopalloni presenti in commercio in Italia

	Arctic Front	Arctic Front Advance	Arctic Front Advance ST
Immagine			
Nome commerciale e modello	ARCTIC FRONT	ARCTIC FRONT ADVANCE	ARCTIC FRONT ADVANCE ST
Codice attribuito dal fabbricante (identificativo catalogo)	2AF231; 2AF281	2AF233; 2AF283;	2AFAST23; 2AFAST28
Fabbricante	MEDTRONIC CRYOCATH LP	MEDTRONIC CRYOCATH LP	MEDTRONIC CRYOCATH LP
Fornitore	Medtronic	Medtronic	Medtronic
Progressivo di sistema attribuito al Dispositivo	394952/R	533659/R;	1286021/R; 1286032/R
CND	C020302 - Elettrocateteri per ablazione con crioenergia di foci aritmogeni	C020302 - Elettrocateteri per ablazione con crioenergia di foci aritmogeni	C020302 - Elettrocateteri per ablazione con crioenergia di foci aritmogeni
Classe di rischio	III	Ш	III
Descrizione	Cateteri a pallone monouso flessibili con lume per guida specificamente disegnati per crioablazione di tessuto. La forma del pallone ne permette il semplice posizionamento nell'antro.	Il catetere per crioablazione cardiaca Arctic Front Advance è un catetere a palloncino (criocatetere Arctic Front Advance), flessibile, dotato di filo guida, per l'ablazione del tessuto cardiaco.	Il catetere per crioablazione cardiaca Arctic Front Advance ST (crio- palloncino Arctic Front Advance ST) è un catetere a palloncino, flessibile, su filo guida, per l'ablazione del tessuto cardiaco.
Destinazione d'uso	Il catetere per crioablazione Arctic Front è destinato al trattamento di pazienti che soffrono di Fibrillazione Atriale Parossistica (FAP). Altri dispositivi possono essere utilizzati insieme ad Arctic Front nel trattamento della FAP	Il catetere per crioablazione cardiaca Arctic Front Advance è destinato al trattamento dei pazienti affetti da fibrillazione atriale parossistica (PAF).	II catetere per crioablazione cardiaca Arctic Front Advance ST è indicato per il trattamento dei pazienti affetti da fibrillazione atriale.

	А	rctic Front		Arct	ic Front Ad	vance	Arc	Diam. 0.0035" 0.00 max guida Defl. 45° bidir. Diam. 28 mm 23 ballone Diam. 10.5 Fr 10.8			
Dimensioni		2AF231	2AF281		2AF283	2AF233		2AFAST28	2AFAST23		
	Diam. max guida Defl. bidir.	0.035" 45°	0.035" 45°	Diam. max guida	0.0035"	0.0035"	Diam. max guida	0.0035"	0.0035"		
	Diam. pallone	23 mm	28 mm	Defl. bidir.	45°	45°	Defl. bidir.	45°	45°		
	Diam.	10.5 Fr	10.5 Fr	Diam. pallone	28 mm	23 mm	Diam. pallone	28 mm	23 mm		
	Lunghezza	140 cm	140 cm	Diam. catet	10.5 Fr	10.5 Fr	Diam. catet	10.5 Fr	10.5 Fr		
Controindicazioni	Arctic Front è nel ventric pericolo di catetere ne nei pazien sistemiche in condizio manipolaz all'interno costituire e esempio, i murale interiorioglobuli	controindica olo, a causa intrappolan elle corde te ti affetti da i attive ini in cui la ione del cate del cuore po un pericolo (in caso di tro racardiaca) ti affetti da inemia ti con uno o	del nento del endinee nfezioni etere otrebbe (ad embosi	cardiaca A controindi nel ver pericol del cat tendino nei paz sistem in cono manipo all'inte costitu esemp murale nei paz crioglo nei paz	cato: ntricolo, a ca o di intrappo etere nelle c	Advance è ausa del plamento corde da infezioni la catetere e potrebbe plo (ad i trombosi ca) da	Arctic Fror controindi nel ver di intra nelle cc nei paz sistemi in conc del cat potrebl esempi intraca nei paz crioglo nei paz	nt Advance ST cato: ntricolo, a causa appolamento de corde tendinee zienti affetti da iche attive dizioni in cui la etere all'interno be costituire ur io, in caso di tr	à del pericolo el catetere infezioni manipolazione o del cuore n pericolo (ad ombosi murale		

APPENDICE 2. Componenti del Sistema Arctic Front

Dispositivo	Immagine	Descrizione
Arctic Front Advance ST Cryoballoon		<u>Catetere a pallone</u> per isolamento delle vene polmonari durante il trattamento della fibrillazione atriale.
Achieve Mapping Catheter	9	Catetere per mappatura e registrazione elettrofisiologica intracardiaco. Consente la valutazione dell'isolamento delle vene polmonari durante la procedura di crioablazione con ARCTIC FRONT.
CryoConsole		In modalità CryoMapping (con cateteri compatibili Medtronic che supportano questa funzione), la console determina un'alterazione nella conduzione cardiaca per consentire la verifica del sito di ablazione e la posizione corretta della punta del catetere.
		In <u>modalità CryoAblation</u> , i segmenti di raffreddamento dei cateteri raggiungono temperature di crioablazione sufficienti a causare la necrosi del tessuto. Il serbatoio del refrigerante si trova nella console.
FlexCath Advance Steerable Sheath		Introduttore orientabile che consente l'inserimento e il posizionamento del catetere nell'atrio sinistro.

Appendice 2BIS. Consumi cateteri ablativi a radiofrequenza, nazionali e regionali

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale 015-2016			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
459565/R	MEDTRONIC ABLATION FRONTIERS, LLC	PVAC PULMONARY VEIN ablation catheter	C020399 - dispositivi per ablazione di foci aritmogeni - altri	Elettrocatetere per ablazione tridimensionale	4.575,00	4.575,00	4.575,00				
727167/R	MEDTRONIC ABLATION FRONTIERS, LLC	PVAC GOLD catetere per ablazione delle vene polmonari PVAC gold	C020399 - dispositivi per ablazione di foci aritmogeni - altri	Elettrocatetere per ablazione tridimensionale	4.073,28	0,01	5.368,00				
585692/R	BIOSENSE WEBSTER INC.	NMARQ circular irrigation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione tridimensionale	3.786,34	2.135,00	4.758,00				
459164/R	MEDTRONIC ABLATION FRONTIERS, LLC	MASC multi-array septal catheter catetere settale multi array MASC	C020399 - dispositivi per ablazione di foci aritmogeni - altri	Elettrocatetere per ablazione tridimensionale	2.928,00	2.928,00	2.928,00				
39173/R	BIOSENSE WEBSTER, INC.	NAVISTAR DS	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	2.883,00	2.806,00	3.050,00				
39067/R	BIOSENSE WEBSTER, INC.	NAVISTAR THERMOCOOL	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	2.757,20	2.757,20	2.757,20				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
39140/R	BIOSENSE WEBSTER, INC.	NAVISTAR	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	2.732,80	2.440,00	2.928,00				
304887/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY COOL FLEX modello 1304-CF-7-0.5(5)2- M-TE4BE1EB	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	2.699,89	976,00	4.392,00	1	1.220,00	1.220,00	1.220,00
1200971/R	ST. JUDE MEDICAL GVA SÄRL	TACTICATH QUARTZ 65	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	2.135,00	2.135,00	2.135,00				
1200972/R	ST. JUDE MEDICAL GVA SÄRL	TACTICATH QUARTZ 75	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	2.100,14	1.891,00	2.135,00				
1205427/R	BOSTON SCIENTIFIC CORPORATION	INTELLA TIP MIFI OI	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.986,45	-	2.110,60				
542494/R	ENDOSENSE SA	TACTICATH QUARTZ 65	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.894,50	976,00	2.135,00				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1210633/R	ST. JUDE MEDICAL	TACTICATH QUARTZ WITH 75MM CURVE	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.875,38	-	2.379,00	5	-	-	1
1150892/R	BOSTON SCIENTIFIC CORPORATION	INTELLA TIP MIFI XP	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.856,54	1.196,82	1.952,00				976,00
607687/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	COOL PATH DUO MEDIGUIDE ENABLED MOD. 1304-CP2-8-25-LC-RA-ME	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.728,00	915,00	1.830,00				
1377195/R	BOSTON SCIENTIFIC CORPORATION	INTELLA TIP MIFI OI	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.674,76	1.342,00	2.684,00	18	1.530,42	1.464,00	1.549,40
542499/R	ENDOSENSE SA	TACTICATH QUARTZ 75	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.637,60		3.050,00	50	-	-	-
1377198/R	BOSTON SCIENTIFIC CORPORATION	INTELLA TIP MIFI OI	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.549,40	1.549,40	1.549,40				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1378175/R	ST. JUDE MEDICAL	Flexability sensor enabled ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.498,31	1.098,00	2.074,00				
1150956/R	BOSTON SCIENTIFIC CORPORATION	INTELLA TIP MIFI XP	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.478,26	1.196,82	1.817,80				
1339796/R	BOSTON SCIENTIFIC CORPORATION	INTELLANAV OI	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.410,66	-	1.594,73				
66812/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY TRIFLEX elettrocatetere per ablazione modello 1304-7-25-X-X-X	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.339,60	1.339,60	1.339,60				
1150937/R	BOSTON SCIENTIFIC CORPORATION	INTELLA TIP MIFI XP	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.312,77	-	2.110,60				
1377185/R	BOSTON SCIENTIFIC CORPORATION	INTELLA TIP MIFI OI	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.287,10	-	1.817,80	6	1.464,00	1.464,00	1.464,00

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
21229/R	BIOSENSE WEBSTER INC.	EZ STEER THERMOCOOL	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.268,18	732,50	1.403,00	2	1.146,80	1.146,80	1.146,80
44824/R	BIOSENSE WEBSTER INC.	CELSIUS THERMOCOOL	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.261,00	732,00	1.889,50	8	976,00	732,00	976,00
400040/R	BOSTON SCIENTIFIC CORPORATION	BLAZER OPEN IRRIGATED	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.257,20	793,00	1.586,00	12	1.549,40	1.549,40	1.549,40
319080/R	BIOSENSE WEBSTER INC.	THERMOCOOL SF BI- directional catetere per elettrofisiologia	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.247,20	519,00	1.403,00	76	1.310,92	1.234,64	1.342,00
235984/R	BIOSENSE WEBSTER INC.	CELSIUM RMT thermocool catetere per elettrofisiologia orientabile	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.220,00	1.220,00	1.220,00				
1081015/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY COOL PATH Ablation Catheter modello 1304-CP-7-25-M	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.220,00	1.220,00	1.220,00				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1378177/R	ST. JUDE MEDICAL	Flexability sensor enabled ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.211,68	-	1.403,00	3	-	-	-
1081016/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY COOL PATH Ablation Catheter modello 1304-CP-7-25-L	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.204,75	1.195,60	1.220,00				
1178628/R	ST. JUDE MEDICAL	Flexability ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.204,05	-	1.708,00	5	1.220,00	1.220,00	1.220,00
1150938/R	BOSTON SCIENTIFIC CORPORATION	INTELLA TIP MIFI XP	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.196,82	1.196,82	1.196,82				732,00
1150941/R	BOSTON SCIENTIFIC CORPORATION	INTELLA TIP MIFI XP	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.196,82	1.196,82	1.196,82				
1150970/R	BOSTON SCIENTIFIC CORPORATION	INTELLA TIP MIFI XP	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.196,82	1.196,82	1.196,82				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
304889/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY COOL FLEX modello 1304-CF-7-0.5(5)2- L-TE4BE1EB	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.190,34	-	1.708,00	3	1.220,00	1.220,00	1.220,00
1378182/R	ST. JUDE MEDICAL	Flexability sensor enabled ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.185,72	976,00	1.378,60				
1378180/R	ST. JUDE MEDICAL	Flexability sensor enabled ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.179,33	1.098,00	1.220,00				
11665/R	ST. JUDE MEDICAL	SAFIRE elettrocatetere per ablazione modello 402819	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.167,70	646,60	1.817,80	5	976,00	976,00	976,00
1178609/R	ST. JUDE MEDICAL	Flexability ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.163,24	-	3.806,90	6	1.098,00	1.098,00	1.098,00
73168/R	OSYPKA AG	catetere orientabile per ablazione a RF e mappaggio con elettrodo distale di 8mm diviso cerablate plus flutter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.159,00	1.159,00	1.159,00				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
179686/R	VASCOMED GMBH	TRIGNUM FLUX GOLD	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.159,00	1.159,00	1.159,00				
1378169/R	ST. JUDE MEDICAL	flexability sensor enabled ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.141,68	634,90	2.074,00	25	1.091,90	1.091,90	1.091,90
304891/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY COOL FLEX modello 1304-CF-7-0.5(5)2- L1-TE4BE1EB	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.136,08	929,84	1.525,00				
976310/R	OSYPKA AG	catetere orientabile per ablazione a RF e mappaggio - curva "classic" cerablate easy	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.126,34	440,52	1.368,00				
1178629/R	ST. JUDE MEDICAL	Flexability ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.118,09	-	1.708,00	4	1.220,00	1.220,00	1.220,00
1178584/R	ST. JUDE MEDICAL	Flexability ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.106,32	-	1.464,00	9	-	-	-

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1378184/R	ST. JUDE MEDICAL	Flexability sensor enabled ablation catheter	co2o301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.098,00	1.098,00	1.098,00				
102416/R	MEDTRONIC INC.	SPRINKLR	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.098,00	915,00	1.133,00				
378891/R	VASCOMED GMBH	ALCATH FLUX GREEN G EXTRA	co20301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.091,60	732,00	1.342,00				
378890/R	VASCOMED GMBH	ALCATH FLUX BLUE G EXTRA	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.085,80	1.085,80	1.085,80				
232809/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	CONTACT THERAPY COOL PATH DUO modello 1304- CP2-7-1.5(5)2-L1- TE4BE1AB-CN	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.078,00	813,00	1.220,00				
378892/R	VASCOMED GMBH	ALCATH FLUX BLACK G EXTRA	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.058,60	732,00	1.342,00				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
35135/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY COOL PATH elettrocatetere per ablazione modello 1304-CP-7-25-X-X	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.050,80	976,00	1.220,00				
1339777/R	BOSTON SCIENTIFIC CORPORATION	INTELLANAV OI	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.045,67	-	1.642,06				
907434/R	VASCOMED GMBH	ALCATH FLUTTER FLUX BLACK G EXTRA	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.039,24	793,00	1.525,00				
102329/R	MEDTRONIC INC.	RF CONTACTR	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.037,00	1.037,00	1.037,00				
1178630/R	ST. JUDE MEDICAL	Flexability ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.033,81	-	1.708,00				
329382/R	BOSTON SCIENTIFIC CORPORATION	BLAZER PRIME HTD	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.023,00	804,00	1.464,00				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
231768/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	CONTACT THERAPY COOL PATH DUO modello 1304- CP2-7-1.5(5)2-M-TE4BE1AB- CN	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.018,00	678,00	1.220,00				
1178583/R	ST. JUDE MEDICAL	Flexability ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.014,47	-	2.074,00	43	1.098,00	1.098,00	1.098,00
11666/R	ST. JUDE MEDICAL	SAFIRE elettrocatetere per ablazione modello 402820	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.013,30	646,60	1.814,00	3	976,00	976,00	976,00
232807/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	CONTACT THERAPY COOL PATH DUO modello 1304- CP2-7-1.5(5)2-L-TE4BE1AB- CN	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	1.010,00		1.220,00				
1178548/R	ST. JUDE MEDICAL	Flexability ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	990,19	689,30	1.207,80	21	1.015,51	907,82	1.115,94
11667/R	ST. JUDE MEDICAL	SAFIRE elettrocatetere per ablazione modello 402821	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	976,00	976,00	976,00	7	976,00	976,00	976,00

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1081025/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY Ablation Catheter modello 1304-7-25-E	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	976,00	854,00	1.220,00				
85333/R	MEDTRONIC INC.	RF CONDUCTR MC 8MM	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	954,20	852,80	1.133,40				
74940/R	BIOSENSE WEBSTER, INC.	CELSIUS THERMISTOR STD	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	951,60	634,40	1.199,00				
15941/R	BOSTON SCIENTIFIC CORPORATION	BLAZER II, BLAZER II HTD, cateteri bidirezionali per ablazione	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	949,00	409,20	1.803,20	252	979,40	869,39	1.011,48
907454/R	VASCOMED GMBH	ALCATH FLUTTER BLACK LT G	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	938,77	676,00	1.525,00				
15964/R	BOSTON SCIENTIFIC CORPORATION	BLAZER II XP, BLAZER II XP HTD, catetere termico per ablazione	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	933,90	409,20	3.110,00	177	978,55	957,70	1.000,40

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
329326/R	BOSTON SCIENTIFIC CORPORATION	BLAZER PRIME XP	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	930,30	793,00	1.220,00				
1178627/R	ST. JUDE MEDICAL	Flexability ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	920,78	-	1.561,60	3	-	-	-
1081045/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY Ablation Catheter modello 1304-7-25-M-BD	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	913,87	585,60	1.220,00	3	689,30	698,30	698,30
11672/R	ST. JUDE MEDICAL	SAFIRE elettrocatetere per ablazione modello 402825	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	900,00	793,00	951,00				
1081050/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY Ablation Catheter modello 1304-7-25-M-TE8- BD	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	888,31	689,30	1.220,00	5	689,30	698,30	698,30
304890/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY COOL FLEX modello 1304-CF-7-0.5(5)2- XL-TE4BE1EB	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	878,40	1.134,60	1.220,00				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1081023/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY Ablation Catheter modello 1304-7-25-M	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	874,59	672,74	1.220,00				
10844/R	ST. JUDE MEDICAL	SAFIRE elettrocatetere per ablazione modello 402818	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	867,70	780,00	915,00	1	854,00	854,00	854,00
1081010/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY DUAL-8 Ablation Catheter modello 1304-7-25- L-TE8TC2	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	865,73	793,00	1.220,00				
11677/R	ST. JUDE MEDICAL	SAFIRE elettrocatetere per ablazione modello 402829	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	857,60	555,10	1.220,00	2	732,00	732,00	732,00
824111	BIOSENSE WEBSTER INC.	CELSIUS FLTR CATHETER. Catetere per elettrofisiologia.	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	854,00	854,00	854,00				
61088/R	BOSTON SCIENTIFIC CORPORATION	CHILLI II, catetere per ablazione raffreddata.	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	854,00	854,00	854,00				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1081012/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY DUAL-8 Ablation Catheter modello 1304-7-25- XL-TE8TC2	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	850,95	793,00	963,80				
44828/R	BIOSENSE WEBSTER INC.	CELSIUS standard	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	850,80		1.889,50	20	844,85	732,00	976,00
11998/R	BOSTON SCIENTIFIC CORPORATION	Cateteri ad elettrodo orientabili per ablazione stinger	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	847,40	71,00	1.431,40				
11668/R	ST. JUDE MEDICAL	SAFIRE elettrocatetere per ablazione modello 402822	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	836,40	555,00	976,00	7	976,00	976,00	976,00
134229/R	VASCOMED GMBH	ALCATH FULL CIRCLE	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	805,60						
11676/R	ST. JUDE MEDICAL	SAFIRE elettrocatetere per ablazione modello 402828	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	801,70	500,00	854,00				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe :	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1081046/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY Ablation Catheter modello 1304-7-25-L-BD	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	790,56	683,20	854,00				
1081009/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY DUAL-8 Ablation Catheter modello 1304-7-25- M-TE8TC2	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	775,57	597,80	1.220,00				
167679/R	BIOSENSE WEBSTER INC.	CELSIUS electrophysiology chateter deflectable braided tip thermistor	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	752,00	732,00	829,00				
378893/R	VASCOMED GMBH	ALCATH FLUX CYAN G EXTRA	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	732,00	732,00	732,00				
41955/R	BIOSENSE WEBSTER INC.	EZ STEER bidirectional	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	730,35	-	1.195,60	6	963,80	915,00	1.012,60
75233/R	BIOSENSE WEBSTER INC.	CELSIUS DS	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	726,80	471,70	1.195,60				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1081021/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY Ablation Catheter modello 1304-7-25-S	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	725,90	725,90	725,90				
67743/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY COOL PATH ALL BRAIDED elettrocatetere per ablazione modello 1304-CP- 7-25-X-AB	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	725,90	725,90	725,90				
11669/R	ST. JUDE MEDICAL	SAFIRE elettrocatetere per ablazione modello 402823	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	725,00	555,00	1.817,00				
1081024/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY Ablation Catheter modello 1304-7-25-L	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	723,02	488,00	1.220,00				
824489	BIOSENSE WEBSTER INC.	CELSIUS FLTR CATHETER. Catetere per elettrofisiologia	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	716,80	683,20	1.035,80				
11673/R	ST. JUDE MEDICAL	SAFIRE elettrocatetere per ablazione modello 402826	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	715,00	793,00	976,00	2	976,00	976,00	976,00

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
85198/R	MEDTRONIC INC.	RF CONDUCTR MC	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	712,40	560,00	1.708,00				
67725/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY elettrocatetere per ablazione bi-direzionale modello 1304-7-25-X-X-X-BD	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	688,70	597,80	1.451,80				
824587	BIOSENSE WEBSTER INC.	CELSIUS FLTR CATHETER. Catetere per elettrofisiologia	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	681,60	235,90	768,60				
1081029/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY Ablation Catheter modello 1304-7-25-L-TH	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	671,00	671,00	671,00				
66741/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY elettrocatetere per ablazione con termistore modello 1304-7-25-X-TE8- TH	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	671,00	671,00	671,00				
1064897/R	ST. JUDE MEDICAL	LIVEWIRE TC Ablation Catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	643,85	643,85	643,85				

Numero di	Fabbricante	Modello	Cnd	Tipologia		nisteriale (2015-2016)			DiMe	2016	
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
67345/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY elettrocatetere per ablazione con termocoppia modello 1304-5-25-M- TE4BE1	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	635,90	597,80	658,80				
67182/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY elettrocatetere per ablazione con termistore modello 1304-7-X-X-TH	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	630,30	488,00	671,00				
35130/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY DUAL 8 elettrocatetere per ablazione modello 1304-7-X-X-X	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	623,40	488,00	735,50				
34373/R	ST. JUDE MEDICAL	LIVEWIRE TC catetere orientabile per ablazione modello 40212X	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	585,60	585,60	585,60	14	585,60	585,60	585,60
67321/R	IRVINE BIOMEDICAL INC - ST. JUDE MEDICAL COMPANY	THERAPY elettrocatetere per ablazione con termocoppia modello 1304-7-X-X	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	570,80	484,00	1.098,00				
85389/R	MEDTRONIC INC.	RF ENHANCR II	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	558,60	455,80	730,80	1	468,00	468,00	468,00

Numero di	Fabbricante	Modello	Cnd Tipologia Flusso ministeriale Consumi (2015-2016)			DiMe	2016				
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1064893/R	ST. JUDE MEDICAL	LIVEWIRE TC Ablation Catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	555,10	555,10	555,10				
10657/R	ST. JUDE MEDICAL	LIVEWIRE TC catetere orientabile per ablazione modello 40211X	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	537,60	212,30	689,30	48	581,20	212,27	689,30
379309/R	VASCOMED GMBH	ALCATH FLUX BLACK EXTRA	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	488,00	488,00	488,00				
10659/R	ST. JUDE MEDICAL	LIVEWIRE TC catetere orientabile per ablazione modello 40219X	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	487,80	350,00	689,00	22	670,45	585,60	689,30
1064891/R	ST. JUDE MEDICAL	LIVEWIRE TC Ablation Catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	483,31	457,50	488,00				
1064900/R	ST. JUDE MEDICAL	LIVEWIRE TC Ablation Catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	480,04	457,50	488,00				

Numero di	Fabbricante	Modello	Cnd	Tipologia	Flusso ministeriale Consumi (2015-2016)						
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1064889/R	ST. JUDE MEDICAL	LIVEWIRE TC Ablation Catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	479,92	478,24	488,00	23	478,24	478,24	478,24
1064901/R	ST. JUDE MEDICAL	LIVEWIRE TC Ablation Catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	478,24	478,24	478,24	9	478,24	478,24	478,24
1064902/R	ST. JUDE MEDICAL	LIVEWIRE TC Ablation Catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	470,83	457,50	488,00	2	478,24	478,24	478,24
1378171/R	ST. JUDE MEDICAL	Flexability sensor enabled ablation catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	459,53	-	1.378,60	6	-	-	-
12441/R	BARD ELECTROPHYSIOLOGY DIV. CR BARD INC.	Catetere per ablazione e diagnostica BARD HD MESH ABLATOR	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	448,90	448,90	448,90				
976266/R	OSYPKA AG	Catetere orientabile per ablazione a RF e mappaggio - curva "SIGMA" CERABLATE EASY	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	436,11	436,11	436,13				

Numero di	Fabbricante	Modello	Cnd	Tipologia	Flusso ministeriale Consumi (2015-2016)			DiMe 2016			
repertorio					Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)	N.	Costo unitario medio (€)	Costo unitario min (€)	Costo unitario max (€)
1064892/R	ST. JUDE MEDICAL	LIVEWIRE TC Ablation Catheter	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	412,48	350,00	581,21	24	588,72	581,21	581,21
37424/R	BIOSENSE WEBSTER INC.	CELSIUS RMT	C020301 - elettrocateteri per ablazione a radiofrequenza di foci aritmogeni	Elettrocatetere per ablazione lineare	366,00	366,00	366,00				

APPENDICE 3. Strategia di ricerca della letteratura scientifica

Letteratura secondaria

30 giugno 2017

Siti consultati	Keywords	Risultati
Health Technology Assessment (HTA); National Institute for Health Research-	Cryoablation, Cryocatheter, Cryosurgery, Cryoballoon, or Cryotherapy, Atrial fibrillation, Cryochirurgie, Cryothérapie, Fibrillation auriculaire, Cathéter à ballonnet	20 documenti pertinenti

PUBMED

#	Search	Results
1	Atrial Fibrillation"[Mesh] OR "afb"[Title/Abstract]) OR "afib"[Title/Abstract] OR "af"[Title/Abstract] OR "Auricular Fibrillation" OR "atrial fibrillation"	7720533
2	"cryo ablation" OR "cryo therapy" OR "cryo thermal" OR "arctic front" OR "cryo surgery" OR "cryo surgical" OR "cryothermal" OR "cryotechnique" OR "cryocatheter" OR cryosurgery[mesh] OR cryoablat* OR cryoballoon* OR cryotherap* OR cryosurg* OR "cryo balloon"	20533
3	1 AND 2	1048
4	3 AND systematic[sb]	33

COCHRANE LIBRARY

#	Search	Results
1	"afb" or "afib" or "af" or "Auricular Fibrillation" or "atrial fibrillation"	14641
2	[Atrial Fibrillation] explode all trees	3372
3	1 OR 2	14641
4	"cryo ablation" or "cryo therapy" or "cryo thermal" or "arctic front" or "cryo surgery" or "cryo surgical" or "cryothermal" or "cryotechnique" or "cryocatheter" or cryoablat* or cryoballoon* or cryotherap* or cryosurg* or "cryo balloon"	1921
5	MeSH descriptor: [Cryosurgery] explode all trees	349
6	4 or 5	1921
7	3 and 6	152

Cochrane Reviews: 21 Other Reviews: 4

Technology Assessments: 5 Economic Evaluations: 4

Trials: 118

Totale secondaria: da banche dati e siti senza doppi: 82 records

Letteratura primaria

PUBMED

#	Search	Results
1	Atrial Fibrillation"[Mesh] OR "afb"[Title/Abstract]) OR "afib"[Title/Abstract] OR "af"[Title/Abstract] OR "Auricular Fibrillation" OR "atrial fibrillation"	77239
2	"cryo ablation" OR "cryo therapy" OR "cryo thermal" OR "arctic front" OR "cryo surgery" OR "cryo surgical" OR "cryothermal" OR "cryotechnique" OR "cryocatheter" OR cryosurgery[mesh] OR cryoablat* OR cryoballoon* OR cryotherap* OR cryosurg* OR "cryo balloon"	20533
3	1 AND 2	1048
4	"editorial"[Publication Type] OR "letter"[Publication Type] OR "news"[Publication Type] OR "newspaper article"[Publication Type]	1583057
5	3 not 5	968
6	Filters: Humans; English; French; Italian; Spanish	
7	5 and 6	687
8	((("cryo surgery" OR "cryo surgical" OR "cryothermal" OR "cryotechnique" OR "cryocatheter" or cryoablat* OR cryoballoon* OR cryotherap* OR cryosurg*)))) AND ((("Auricular Fibrillation" OR "atrial fibrillation")) OR ("afb"[Title/Abstract] OR "afib"[Title/Abstract] OR "af"[Title/Abstract]))	1041
9	Inprocess[sb or publisher[sb]	1333167
10	8 and 9	126 documenti in process

Totale primaria: (672+126+118) = 797 documenti senza doppi

Solo studi pubblicati nel 2016-2017: 189 documenti

Studi in corso

BANCA DATI	KEYWORDS	Studi recuperati	Studi pertinenti
EU Clinical Trials	Cryoablation and atrial Fibrillation	0	
Register	cryoballoons and atrial fibrillation	0	
	cryoballoon and atrial fibrillation	2	0
	cryotherapy and atrial fibrillation	0	0
	cryosurgery and atrial fibrillation	0	0
	cryothérapie and atrial fibrillation	1	0
	"arctic front" and atrial fibrillation		
Clinical trials.gov	Cryoablation or cryosurgery or cryoballoon* or cryotherapy or "arctic front" and atrial fibrillation	57	49
ICTRP Search Portal of the WHO	Cryoablation or cryosurgery or cryoballoons or cryotherapy or cryothérapie or cryoballoon or "arctic front" and atrial fibrillation	23	6
NIH Clinical Research Studies	Cryoablation or cryosurgery or cryoballoons or cryotherapy or cryoballoon or "arctic front"	3	0
UK Clinical Trials Gateway	Cryoablation or cryosurgery or cryoballoons or cryotherapy or cryoballoon or "arctic front"	18	0
ISRCTN registry	Cryoablation	4	0
	cryoballoons	0	
	cryoballoon	0	
	cryotherapy	22	0
	cryosurgery	6	0
	"arctic front"		

Sicurezza - Database di dispositivo-vigilanza

Database of Adeverse Events Notifications (DAEN) - Australia

Implementato dal 2012 al 2017

Termini utilizzati : Cryocath, arctic front

Selezionati 2 devices Medtronic:

Medtronic CryoCath LP - Arctic Front Advance CryoAblation Catheter - Catheter, cardiac, ablation

Medtronic CryoCath LP - Arctic Front Cryoablation Catheter - Catheter, cardiac, ablation

2 report

Agence nationale de sécurité du médicament et des produits de santé (ANSM) - Francia

Ricerca nel sito (non c'è un vero e proprio DB): Informazioni presenti dal 1998 al 2017

Termini utilizzati: Cryocath, arctic front

2 report

Medicines and Healthcare products Regulatory Agency - Gran Bretagna

Alerts and recalls for drugs and medical devices

È possibile applicare alcuni limiti: farmaci o dispositivi, la specialità medica e gli anni.

Selezionato solo medical devices alert e field safety notice.

termini Cryocath, arctic front

0 report

Swissmedic. Istituto svizzero per gli agenti terapeutici - Svizzera

Sono stati selezionati i dispositivi medici. Ricerca richiamo dispositivi medici.

È presente una lista dei richiami dal 2005 al 2017

termini Cryocath, arctic front

1 report

Canada Vigilance Adverse Reaction Online Database - Canada

The Canada Vigilance Adverse Reaction Online Database contains information about suspected adverse reactions (also known as side effects) to health products.

Cryocath, arctic front 0 documenti

0 report

Recalls and Safety Alerts Database

Provides new safety information for health professionals and consumers on health products, such as pain relievers, cold medicines, prescription drugs, medical devices, vaccines and natural health products.

 $\frac{http://www.healthycanadians.gc.ca/recall-alert-rappel-avis/index-eng.php?cat=3\&_ga=2.252639433.1916129435.1499776764-687349281.1499776764$

(ultimo accesso novembre 2017) cryocath, arctic front: 0 documenti

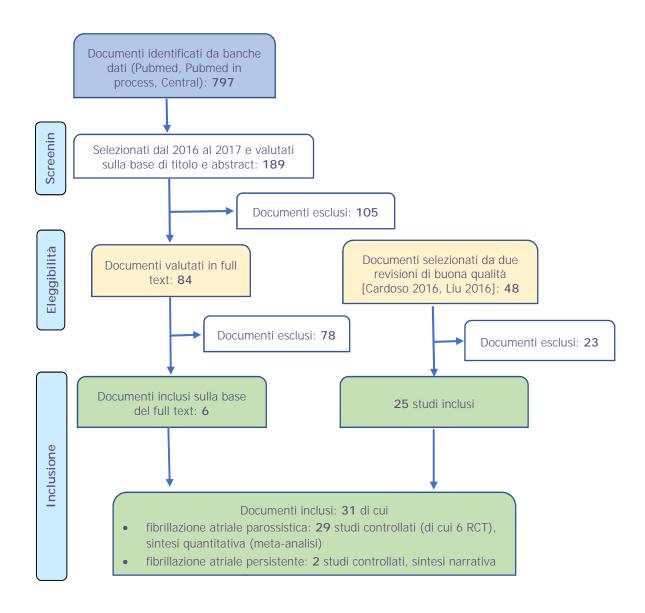
Medtronic: 0 documenti

0 report

Ministero della salute. Avvisi di sicurezza sui dispositivi medici

Dal 2009 al 2017 Arctic front: **O report**

MAUDE FDA -US

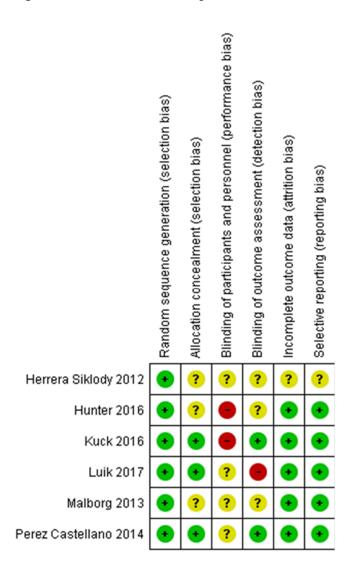

Cryocath, arctic front, cryocathetere

519 report

Screening Documenti da banche dati senza doppi, valutati sulla base di titolo e abstract: 62 Documenti esclusi: 41 Eleaaibilità Documenti identificati Documenti valutati in dai siti valutati sulla full text: 21 base del full text: 20 Documenti esclusi: Documenti esclusi: 18 19 Inclusi 2 report: 1 HTA e 1 documento di policy Inclusi: 2 revisioni sistematiche Documenti inclusi: 4

Figura 1. PRISMA flowfigura 1 riferito alla letteratura secondaria

Figura 2. PRISMA flow riferito alla letteratura primaria



APPENDICE 4. Qualità degli studi

Revisioni sistematiche incluse, valutate mediante checklist AMSTAR

Ref.	1. Was an 'a priori' design provided?	2. Was there duplicate study selection and data extraction?	3. Was a comprehensive literature search performed?	4. Was the status of publication (i.e. grey literature) used as an inclusion criterion?	5. Was a list of studies (included and excluded) provided?	6. Were the characteristics of the included studies provided?	7. Was the scientific quality of the included studies assessed and documented?	the included studies used appropriately	9. Were the methods used to combine the findings of studies appropriate?	10. Was the likelihood of publication bias assessed?	11. Was the conflict of interest included?	AMSTAR SCORE
Cardoso 2016	"NO"	"YES"	"YES"	"YES"	"NO"	"YES"	"YES"	"YES"	"YES"	"YES"	"YES"	8 su 11
Liu 2016	"NO"	"YES"	"YES"	"NO"	"NO"	"YES"	"YES"	"NO"	"YES"	"YES"	"YES"	7 su 11

Figura 3. Rischio di bias degli RCT - fibrillazione atriale parossistica

Legenda

rosso (-) rischio di bias elevato giallo (?) rischio di bias incerto verde (+) rischio di bias basso

Figura 4. Rischio di bias degli studi osservazionali - fibrillazione atriale parossistica

		Selec	tion	Comparability	,	Outcom	ie
	Representativeness of the exposed cohort	Selection of the non exposed cohort	Axertainment of exposure Demonstration tnat outcome of interest was not present at start of	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Wasfollow-up long enough for outcomes to occur	Adequacy of follow up of cohorts
Akestrom 2014	*	*	* * *	**	\star	*	★
Amin 2014	☆	*	★ ☆	**			☆
Aryana 2015	☆	☆	* *	★☆			*
Aryana 2016	*	☆ _	* *	**			\star
Dulac 2014	☆	*	☆ ★	★☆			*
Ferretto 2015	☆	☆	☆ ★	**	☆	\star	☆
Jourda 2015	*	\star	* *	★☆	\star	*	\Rightarrow
Julia 2015	*	\star	* *	**	\star^-	★ :	\star
Kardos 2016	*	\star	* *	**		\star	\star
Khoueiry 2016	*	\star	* *	*☆			*
Knecht 2014	\star	\star	* *	*☆			*
Kojodjojo 2010	☆	☆	★ ☆	★☆		*	*
Kuhne 2010	*	\star	* *	★☆			*
Maagh 2013	*	*	* *	☆☆			*
Miyazaki 2016	*	\star	* *	$^{\diamond}$			*
Mokrani 2012	☆	☆	* *	*☆			*
Mugnai 2014	*	*_	*_*	★ ☆			*
Providencia 2017	*	*_	* *	☆☆			*
Schmidt 2016	*	*_	* *	*☆			*
Sorgente 2010	*	*	* *	*☆			*
Squara 2015	*	*	* *	*☆		-	*
Straube 2016	*	*_	* _*_	★ ☆			☆
Wasserlauf 2015	\star	\star	* *	**	\star	*	*

Figura 4 bis. Rischio di bias degli studi osservazionali - fibrillazione atriale persistente

		Selec	tion	Comparability	Outcome
	Representativeness of the exposed cohort	Selection of the non exposed cohort	Ascertainment of exposure Demonstration tnat outcome or interest was not present at start of	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome Was follow-up long enough for outcomes to occur
Boveda 2016	*	*	* *	*☆	☆ ★ ★
Ciconte 2015	*	*	* *	**	* * *

APPENDICE 5. Avvisi di sicurezza

Database/Organization	Report N.	Type of report	Date	Device	Description
Agence nationale de sécurité du médicament et des produits de santé		SN	2009	Medtronic CryoCath Arctic Front®	Problème concerne les cathéters Arctic Front modèles 2AF231/2AF281 et les CryoConsoles modèle 106E2 dont la version logicielle est 4.02. a été rapporté deux cas de brèche du ballon interne qui n'ont pas déclenché de message d'erreur ni d'arrêt de l'injection de gaz. Dans les deux cas, le médecin a observé une diminution soudaine et rapide de la température d'ablation accompagnée d'une augmentation de la taille du ballon observée par fluoroscopie. Malgré la brèche du ballon interne, le capteur de pression n'a pas envoyé de message d'erreur ni arrêté l'injection. Les médecins ont terminé manuellement l'injection et aucune séquelle patient n'a été reportée, pour aucun des cas.
Agence nationale de sécurité du médicament et des produits de santé		SN	2011		observation entraînant un risque potentiel de fuite de la valve hémostatique sur la gaine orientable Flexcath 12, modèle 3FC12. Historiquement, il a été reporté un taux de 0,35% de cas de fuite de sang ou de solution saline et d'entrée d'air dans la valve hémostatique du Flexcath 12 par les médecins utilisant le FlexCath avec les cathéters de cryoablation Arctic Front. Ce taux inclut les rapports de pénétration de bulles d'air au travers de la valve pendant l'aspiration du port latéral de la gaine. En mai 2011, Medtronic Cryocath a observé que le taux d'occurrence de problèmes de fuites reportés de la valve hémostatique était passé de 0,35% à 2,47%. Nous recommandons que les médecins continuent d'utiliser la gaine orientable FlexCath 12, et comme pour toute utilisation de cathéter, qu'ils restent vigilants au moment de rincer et d'aspirer la gaine, et surveillent attentivement toute perte de sang, fuite de solution saline ou pénétration d'air tel que l'indique la notice du FlexCath 12 et du cathéter de cryoablation Arctic Front

Database/Organization	Report N.	Type of report	Date	Device	Description
Swissmedic	Vk_20091125_06-e1	SN	2009	Medtronic CryoCath Arctic Front®	Idem sopra
Australian Department of Health Therapeutic Goods administration	28086	AE	2012	Catheter	was reported after the initial round of freezes, removing the Arctic Front catheter, checking the veins with a Lasso catheter and removing it, the Arctic front catheter was reinserted to perform further freezes. At some time shortly after reinsertion it was noted that the patient had elevated ST segments in the inferior leads of the ECG. No air was seen entering the sheath. The ECG returned to normally approximately 3 minutes later.
Australian Department of Health Therapeutic Goods administration		AE	2014		Patient underwent ablation procedure case was completed without incident. 19 days later, the patient presented to the hospital with a fever. The patient underwent a CT Scan where it was determined that they had an atrial esophageal fistula. The patient subsequently suffered a heart attack and a stroke.

Legenda "Type of report"

SN Safety Notice

AE Adverse events

APPENDICE 6. Eventi avversi riportati nella banca dati MAUDE

Dalla banca dati MAUDE della Food and Drug Administration (FDA) dal 1° gennaio 2007 al 12 luglio 2017 risultano segnalati 499 eventi avversi per il catetere "Arctic Front Advance" e 20 per il catetere "Arctic Front". Gli eventi sono stati riportati nella tabella seguente seguendo la classificazione del MAUDE ossia "malfunction", "death" e "injury". Dei 519 eventi avversi 92 riportavano dati di letteratura di cui 90 su eventi "injury" e 2 su eventi "death".

Brand name	Malfunction	Injury	Death
Arctic Front	9	10	2
Arctic Front Advance	133	344	21
	142	354	23

Per le *injury* è stata classificata la complicanza riportata nell'evento avverso seguendo la classificazione riportata sul sito web del produttore del *device*, ⁵⁰ aggiungendo *ex novo* quelle non previste. Per i 354 eventi avversi *injury* viene riportata di seguito la frequenza delle complicanze segnalate. Sono stati esclusi i 90 eventi avversi che riportavano dati di letteratura.

	Arctic Front Advance	Arctic Front
Lesione del nervo frenico	99	1
Effusione pericardica	48	
Tamponamento cardiaco	19	
Stenosi della vena polmonare	12	
Ictus	5	
Elevazione del tratto ST	12	
Emottisi	4	
Bradicardia	6	
Danno esofageo (inclusa la fistula esofagea)	3	
Danno alla vena polmonare	2	
Fastidio/dolore al petto	2	
Danno vascolare cerebrale	5	
Tachicardia	2	
Trombo	1	
Lesione gastrica	6	
Affanno	1	
		(continu

(continua)

123

http://www.medtronic.com/us-en/healthcare-professionals/products/cardiac-rhythm/ablation-atrial-fibrillation/arctic-front/indications-safety-warnings.html (ultimo accesso ottobre 2017)

·	Arctic Front Advance	Arctic Front
Ipotensione	3	
Danno all'arteria femorale	1	
Perforazione bronchiale	1	
Nausea/vomito	1	
Perforazione arteriosa	1	
Infarto miocardico	1	
Sanguinamento	2	
Lesione al diaframma	3	
Diminuzione della pressione sanguigna	2	
Flutter atriale (a un anno dalla crioablazione)	1	
Devascolarizzazione a livello dell'esofago e del pericardio	1	
Angina	1	
Coagulo nel bronco sinistro principale	1	
Polmonite da aspirazione	1	
Ablazione aggiuntiva durante la procedura	1	
Distacco di tessuto	1	
Sangue nel tubo endotracheale durante la crioablazione	1	
Problema tecnico del dispositivo	13	1
Totale	263	2

APPENDICE 7. Forest plot relativi alle metanalisi effettuate

Figura 5. Assenza di fibrillazione atriale, confronto tra criopallone e radiofrequenza ,RCTs e studi osservazionali

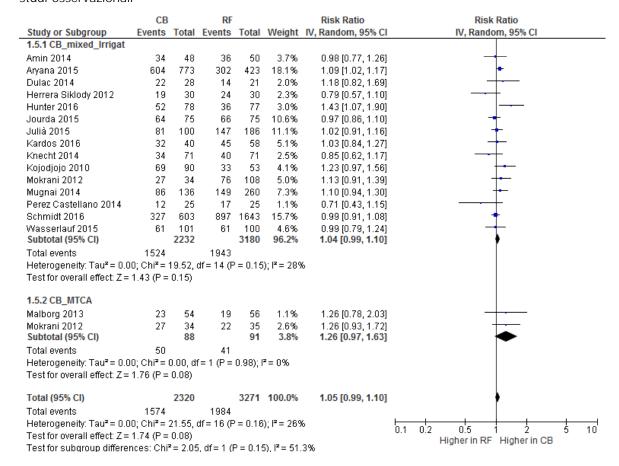


Figura 6. Assenza di fibrillazione atriale, confronto tra criopallone e radiofrequenza solo RCTs

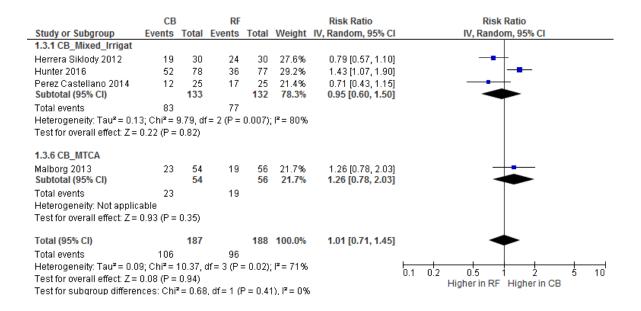
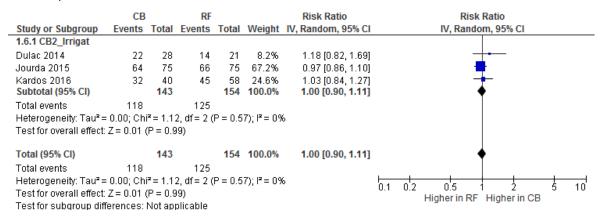
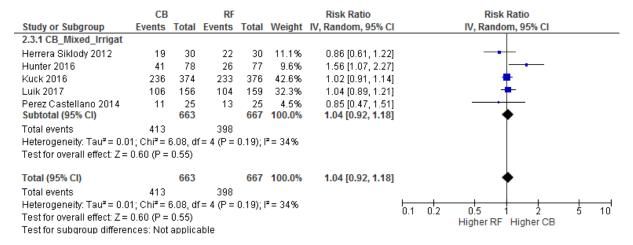
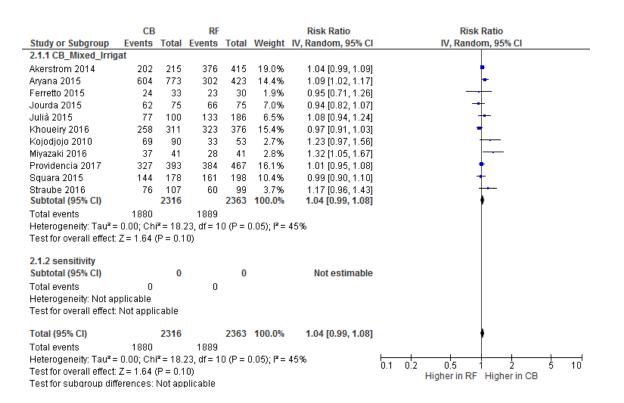



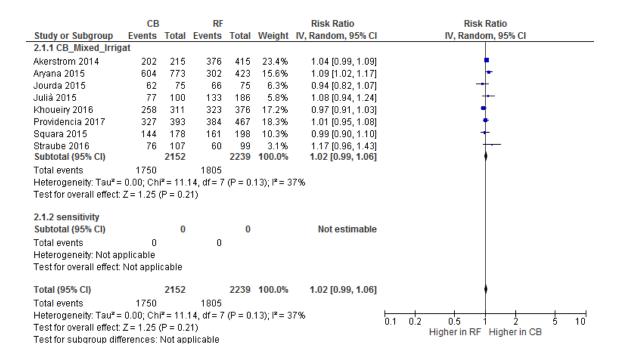
Figura 7. Assenza di fibrillazione atriale, confronto tra criopallone, solo studi osservazionali

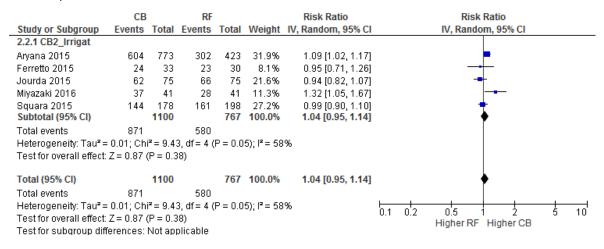
	СВ		RF			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.1.1 CB_mixed_Irrig	at						
Amin 2014	34	48	36	50	3.7%	0.98 [0.77, 1.26]	+
Dulac 2014	22	28	14	21	1.8%	1.18 [0.82, 1.69]	+
Jourda 2015	64	75	66	75	14.6%	0.97 [0.86, 1.10]	+
Julià 2015	81	100	147	186	15.9%	1.02 [0.91, 1.16]	+
Kardos 2016	32	40	45	58	5.4%	1.03 [0.84, 1.27]	+
Knecht 2014	34	71	40	71	2.3%	0.85 [0.62, 1.17]	
Kojodjojo 2010	69	90	33	53	4.1%	1.23 [0.97, 1.56]	 •
Mokrani 2012	27	34	76	108	5.2%	1.13 [0.91, 1.39]	+-
Mugnai 2014	86	136	149	260	8.4%	1.10 [0.94, 1.30]	+-
Schmidt 2016	327	603	897	1643	31.5%	0.99 [0.91, 1.08]	+
Wasserlauf 2015	61	101	61	100	4.7%	0.99 [0.79, 1.24]	+
Subtotal (95% CI)		1326		2625	97.5%	1.02 [0.97, 1.07]	†
Total events	837		1564				
Heterogeneity: Tau² =	0.00; Ch	$i^2 = 7.19$	9, df = 10	(P = 0.	71); $I^2 = 0$	%	
Test for overall effect:	Z = 0.83	(P = 0.4)	1)				
1.1.2 CB_MTCA							
Mokrani 2012	27	34	22	35	2.5%	1.26 [0.93, 1.72]	
Subtotal (95% CI)	21	34 34	22	35	2.5%	1.26 [0.93, 1.72]	
Total events	27	34	22	33	2.070	1.20 [0.55, 1.72]	
Heterogeneity: Not ap			22				
Test for overall effect:		/D = 0.1	4)				
restion overall ellect.	2-1.43	(1 - 0.1	4)				
Total (95% CI)		1360		2660	100.0%	1.03 [0.98, 1.08]	,
Total events	864		1586				
Heterogeneity: Tau² =	0.00; Ch	$i^2 = 9.00$	0, df = 11	(P = 0.	62); $I^2 = 0$	%	0.1 0.2 0.5 1 2 5 10
Test for overall effect:	Z = 1.05	(P = 0.2)	(9)				Higher in RF Higher in CB
Test for subgroup diff	erences:	Chi²= '	1.81, df=	1 (P =	0.18), $I^2 =$	44.7%	riighei iir ta Tiighei iii OD

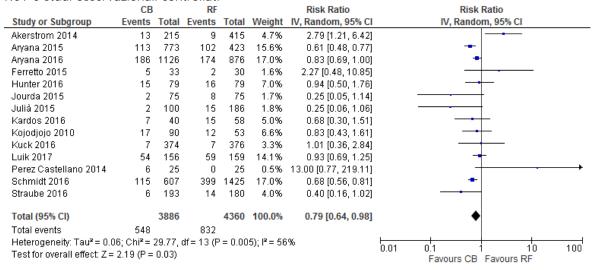

Figura 8. Assenza di fibrillazione atriale, confronto tra criopallone di seconda generazione e radiofrequenza


Figura 9. Assenza di tachiaritmie atriali, confronto tra criopallone e radiofrequenza, RCTs e studi osservazionali

	СВ		RF			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
2.5.1 CB_Mixed_Irrigat							
Akerstrom 2014	202	215	376	415	16.2%	1.04 [0.99, 1.09]	†
Aryana 2015	604	773	302	423	12.2%	1.09 [1.02, 1.17]	*
Ferretto 2015	24	33	23	30	1.6%	0.95 [0.71, 1.26]	
Herrera Siklody 2012	19	30	22	30	1.1%	0.86 [0.61, 1.22]	
Hunter 2016	41	78	26	77	1.0%	1.56 [1.07, 2.27]	
Jourda 2015	62	75	66	75	5.9%	0.94 [0.82, 1.07]	
Julià 2015	77	100	133	186	5.5%	1.08 [0.94, 1.24]	 -
Khoueiry 2016	258	311	323	376	13.1%	0.97 [0.91, 1.03]	•
Kojodjojo 2010	69	90	33	53	2.3%	1.23 [0.97, 1.56]	 -
Kuck 2016	236	374	233	376	7.6%	1.02 [0.91, 1.14]	+
Luik 2017	106	156	104	159	4.7%	1.04 [0.89, 1.21]	+
Miyazaki 2016	37	41	28	41	2.4%	1.32 [1.05, 1.67]	
Perez Castellano 2014	11	25	13	25	0.4%	0.85 [0.47, 1.51]	
Providencia 2017	327	393	384	467	13.7%	1.01 [0.95, 1.08]	†
Squara 2015	144	178	161	198	8.9%	0.99 [0.90, 1.10]	+
Straube 2016	76	107	60	99	3.1%	1.17 [0.96, 1.43]	[
Subtotal (95% CI)		2979		3030	100.0%	1.04 [1.00, 1.08]	•
Total events	2293		2287				
Heterogeneity: Tau² = 0.00	D; Chi²=	24.31, (df = 15 (F	' = 0.06); I² = 38%	6	
Test for overall effect: Z=	1.77 (P =	0.08)					
Total (95% CI)		2979		3030	100.0%	1.04 [1.00, 1.08]	•
Total events	2293		2287				
Heterogeneity: Tau ² = 0.00	0: Chi²=	24.31.	df = 15 (F	r = 0.06); I ^z = 38%	6	
Test for overall effect: Z=	1.77 (P =	0.08)	`				0.1 0.2 0.5 1 2 5 10
Test for subgroup differen			able				Higher in RF Higher in CB


Figura 10. Assenza di tachiaritmie atriali, confronto tra criopallone e radiofrequenza, solo RCTs


Figura 11. Assenza di tachiaritmie atriali, confronto tra criopallone e radiofrequenza, solo studi osservazionali


Figura 12. Assenza di tachiaritmie atriali, confronto tra criopallone e radiofrequenza, solo studi osservazionali con peso relativamente alto

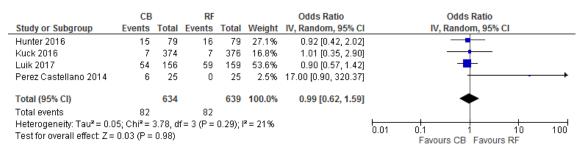

Figura 13. Assenza di tachiaritmie atriali, confronto tra criopallone di seconda generazione e radiofreguenza

Figura 14. Ripetizione della procedura di ablazione, confronto tra criopallone e radiofrequenza, RCT e studi osservazionali controllati

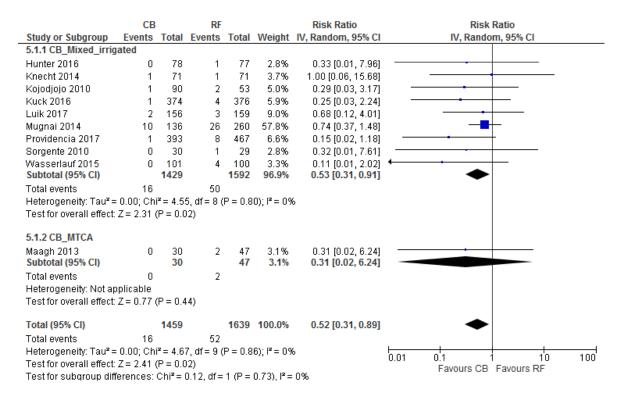

Figura 15. Ripetizione della procedura di ablazione, confronto tra criopallone e radiofrequenza, RCT

Figura 16. Ripetizione della procedura di ablazione, confronto tra criopallone e radiofrequenza, solo studi osservazionali

	СВ		RF			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Akerstrom 2014	13	215	9	415	7.9%	2.90 [1.22, 6.91]	
Aryana 2015	113	773	102	423	19.4%	0.54 [0.40, 0.73]	
Aryana 2016	186	1126	174	876	21.1%	0.80 [0.64, 1.00]	
Ferretto 2015	5	33	2	30	2.7%	2.50 [0.45, 13.98]	- •
Jourda 2015	2	75	8	75	3.1%	0.23 [0.05, 1.12]	
Julià 2015	2	100	15	186	3.4%	0.23 [0.05, 1.04]	-
Kardos 2016	7	40	15	58	6.4%	0.61 [0.22, 1.66]	
Kojodjojo 2010	17	90	12	53	8.4%	0.80 [0.35, 1.83]	
Schmidt 2016	115	607	399	1425	21.0%	0.60 [0.48, 0.76]	-
Straube 2016	6	193	14	180	6.7%	0.38 [0.14, 1.01]	
Total (95% CI)		3252		3721	100.0%	0.69 [0.51, 0.93]	◆
Total events	466		750				
Heterogeneity: Tau ² =	0.10; Ch	$i^2 = 23.9$	53, df = 9	(P = 0.	005); l²=	62%	
Test for overall effect:				,			0.01 0.1 1 10 100 Favours [experimental] Favours [control]

Figura 17. Effusione pericardica, confronto tra criopallone e radiofrequenza, RCTs e studi osservazionali controllati

Figura 18. Effusione pericardica, confronto tra criopallone e radiofrequenza, solo studi osservazionali controllati

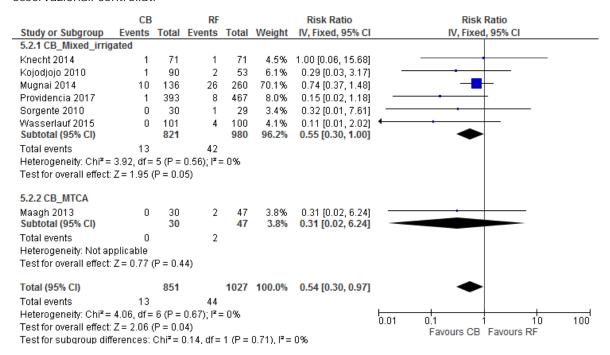
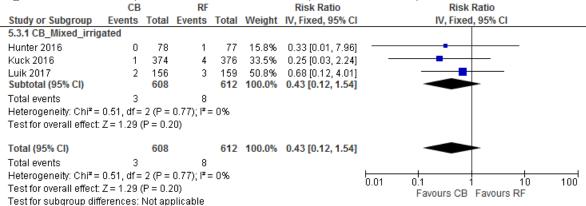
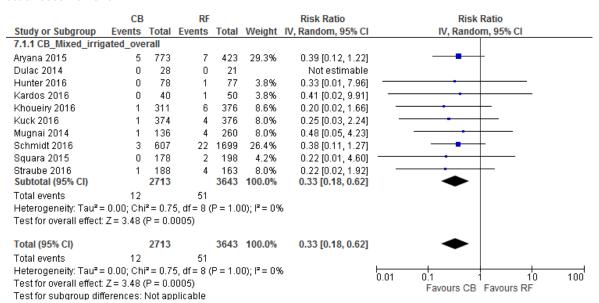
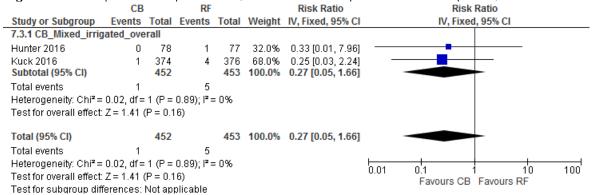



Figura 19. Effusione pericardica, confronto tra criopallone e radiofrequenza, solo RCTs

Figura 20. Tamponamento pericardico, confronto tra criopallone e radiofrequenza, RCTs e studi osservazionali

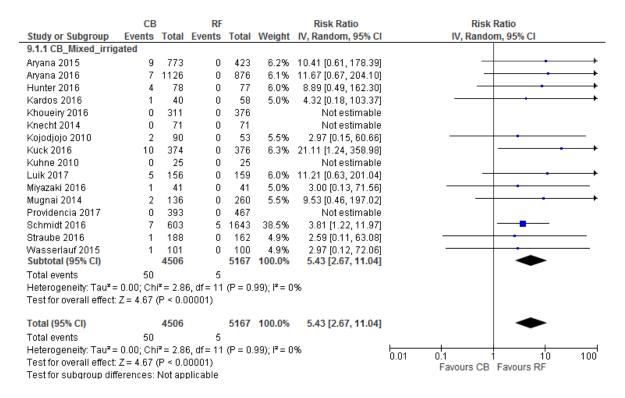

Figura 21. Tamponamento pericardico, confronto tra criopallone e radiofrequenza, solo RCTs

Figura 22. Tamponamento pericardico, confronto tra criopallone di seconda generazione e radiofrequenza

	CB		RF			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Dulac 2014	0	28	0	21		Not estimable	
Kardos 2016	0	40	1	50	47.7%	0.41 [0.02, 9.91]	
Squara 2015	0	178	2	198	52.3%	0.22 [0.01, 4.60]	
Total (95% CI)		246		269	100.0%	0.30 [0.03, 2.68]	
Total events	0		3				
Heterogeneity: Tau² = Test for overall effect:				P = 0.7	8); I² = 09	6	0.01

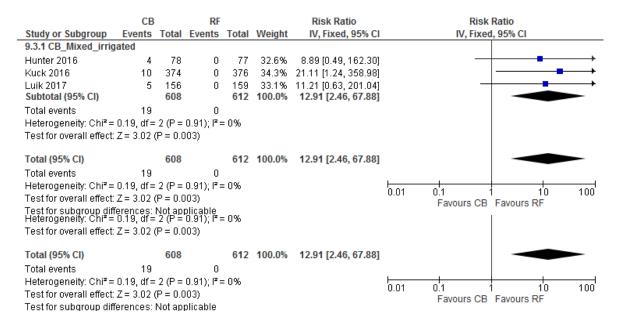

Figura 23. Lesione del nervo frenico confronto tra criopallone e radiofrenza, RCTs e studi osservazionali controllati

Figura 24. Lesione del nervo frenico confronto tra criopallone e radiofrenza, solo studi osservazionali controllati

	СВ		RF			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
9.2.1 CB_Mixed_irrig	ated						
Aryana 2015	9	773	0	423	7.6%	10.41 [0.61, 178.39]	
Aryana 2016	7	1126	0	876	7.5%	11.67 [0.67, 204.10]	
Kardos 2016	1	40	0	58	6.1%	4.32 [0.18, 103.37]	
Khoueiry 2016	0	311	0	376		Not estimable	
Knecht 2014	0	71	0	71		Not estimable	
Kojodjojo 2010	2	90	0	53	6.8%	2.97 [0.15, 60.66]	
Kuhne 2010	0	25	0	25		Not estimable	
Miyazaki 2016	1	41	0	41	6.1%	3.00 [0.13, 71.56]	
Mugnai 2014	2	136	0	260	6.7%	9.53 [0.46, 197.02]	
Providencia 2017	0	393	0	467		Not estimable	
Schmidt 2016	7	603	5	1643	47.1%	3.81 [1.22, 11.97]	
Straube 2016	1	188	0	162	6.0%	2.59 [0.11, 63.08]	
Wasserlauf 2015	1	101	0	100	6.1%	2.97 [0.12, 72.06]	
Subtotal (95% CI)		3898		4555	100.0%	4.47 [2.04, 9.80]	•
Total events	31		5				
Heterogeneity: Chi²=	1.39, df=	8 (P =	0.99); [*=	= 0%			
Test for overall effect:	Z = 3.74	(P = 0.0)	1002)				
Total (95% CI)		3898		4555	100.0%	4.47 [2.04, 9.80]	•
Total events	31		5				
Heterogeneity: Chi²=	1.39, df=	8 (P=	0.99); l² :	= 0%			1004
Test for overall effect:	Z = 3.74	(P = 0.0)	1002)				0.01 0.1 1 10 100 Favours CB Favours RF
Test for subgroup diff	erences:	Not ap	plicable				FAVOUIS OF FAVOUIS RF

Figura 25. Lesione del nervo frenico confronto tra criopallone e radiofrenza, solo RCTs

Figura 26. Lesione del nervo frenico, confronto tra criopallone di seconda generazione e radiofrequenza

	СВ		RF			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Aryana 2016	7	1126	0	876	38.1%	11.67 [0.67, 204.10]	
Kardos 2016	1	40	0	58	30.9%	4.32 [0.18, 103.37]	
Miyazaki 2016	1	41	0	41	31.0%	3.00 [0.13, 71.56]	-
Total (95% CI)		1207		975	100.0%	5.63 [0.96, 32.93]	
Total events	9		0				
Heterogeneity: Tau² =	0.00; Ch	$i^2 = 0.43$	3, df = 2 (P = 0.8	1); I² = 09	6	0.01 0.1 1 10 100
Test for overall effect:	Z = 1.92	(P = 0.0)	16)				Favours CB Favours RF

Figura 27. Tempo di procedura, confronto tra criopallone e radiofrequenza, RCTs e studi osservazionali controllati

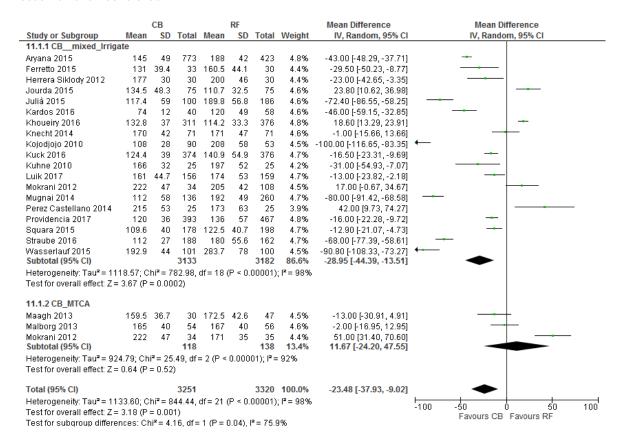


Figura 28. Tempo di procedura, confronto tra criopallone e radiofrequenza, solo RCTs

		СВ			RF			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, Fixed, 95% CI	
11.3.1 CBmixed_Irriga	ite										
Herrera Siklody 2012	177	30	30	200	46	30	6.8%	-23.00 [-42.65, -3.35]			
Kuck 2016	124.4	39	374	140.9	54.9	376	56.5%	-16.50 [-23.31, -9.69]			
Luik 2017	161	44.7	156	174	53	159	22.4%	-13.00 [-23.82, -2.18]			
Perez Castellano 2014 Subtotal (95% CI)	215	53	25 585	173	63	25 590	2.5% 88.3%	42.00 [9.73, 74.27] - 14.44 [-19.89 , - 8.99]		• -	
Heterogeneity: Chi ² = 12.9	90, df = 3	3(P = 1)	0.005);	$I^2 = 779$	6						
Test for overall effect: Z=	5.19 (P	< 0.00	001)								
11.3.2 CB_MTCA											
Malborg 2013 Subtotal (95% CI)	165	40	54 54	167	40	56 56	11.7% 11.7%	-2.00 [-16.95, 12.95] - 2.00 [-16.95, 12.95]		-	
Heterogeneity: Not applic											
Test for overall effect: Z=	0.26 (P	= 0.79))								
Total (95% CI)			639			646	100.0%	-12.98 [-18.10, -7.86]		•	
Heterogeneity: Chi² = 15.2	24, df = 4	4 (P = I	0.004);	$I^2 = 749$	6				-100	-50 0	50 100
Test for overall effect: Z =	•									Favours CB Favours F	
Test for subgroup differer	nces: Ch	ii= 2.3	35, df=	1 (P = I	0.13), I	² = 57.	4%				

Figura 29. Tempo di procedura, confronto tra criopallone e radiofreguenza,

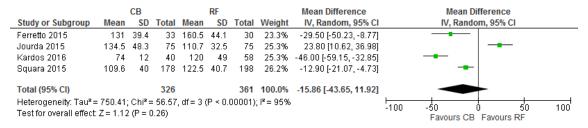


Figura 30. Tempo di fluoroscopia, confronto tra criopallone e radiofrequenza, RCTs e studi osservazionali controllati

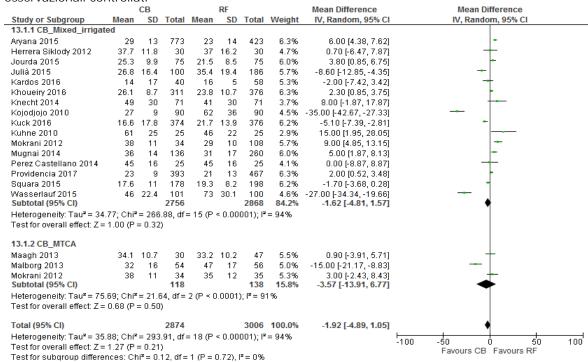
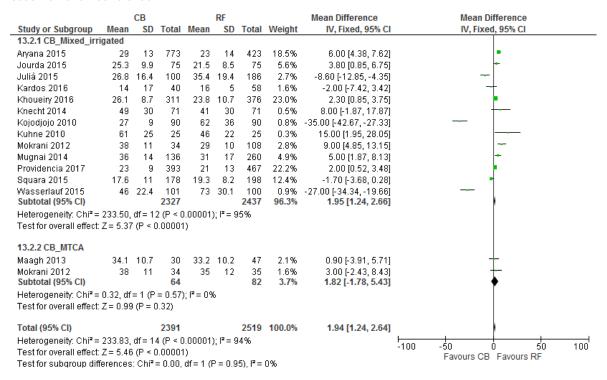



Figura 31. Tempo di fluoroscopia, confronto tra criopallone e radiofreguenza, solo RCTs

		CB		-	RF			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		IV, Fixed, 95% CI	
13.3.1 CB_Mixed_irrigate	ed										_
Herrera Siklody 2012	37.7	11.8	30	37	16.2	30	7.8%	0.70 [-6.47, 7.87]		+	
Kuck 2016	16.6	17.8	374	21.7	13.9	376	76.6%	-5.10 [-7.39, -2.81]			
Perez Castellano 2014 Subtotal (95% CI)	45	16	25 429	45	16	25 431	5.1% 89.5%	0.00 [-8.87, 8.87] - 4.31 [-6.42 , - 2.19]		•	
Heterogeneity: Chi² = 3.24	4, df = 2	(P = 0)	.20); l²:	= 38%							
Test for overall effect: Z =	3.99 (P	< 0.00	01)								
13.3.2 CB_MTCA											
Malborg 2013 Subtotal (95% CI)	32	16	54 54	47	17	56 56		-15.00 [-21.17, -8.83] - 15.00 [-21.17 , -8.83]		-	
Heterogeneity: Not applic	able										
Test for overall effect: Z =	4.77 (P	< 0.00	001)								
Total (95% CI)			483			487	100.0%	-5.43 [-7.43, -3.43]		•	
Heterogeneity: Chi² = 13.5	58, df = 3	3 (P=	0.004);	$I^2 = 789$	%				400	10 10	400
Test for overall effect: Z=	5.32 (P	< 0.00	001)						-100	-50 0 50 Favours CB Favours RF	100
Test for subgroup differer	nces: Ch	ni² = 10	0.34, df	= 1 (P =	0.001		90.3%			ravouis CB Favouis RF	

Figura 32. Tempo di fluoroscopia, confronto tra criopallone e radiofrequenza, solo studi osservazionali controllati

Figura 33. Tempo di fluoroscopia, confronto tra criopallone di seconda generazione e radiofrequenza

		CB			RF			Mean Difference		Mean D	ifference	е	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Rando	om, 95%	CI	
Jourda 2015	25.3	9.9	75	21.5	8.5	75	35.6%	3.80 [0.85, 6.75]					
Kardos 2016	14	17	40	16	- 5	58	24.5%	-2.00 [-7.42, 3.42]		4	•		
Squara 2015	17.6	11	178	19.3	8.2	198	39.8%	-1.70 [-3.68, 0.28]			•		
Total (95% CI)			293			331	100.0%	0.19 [-3.85, 4.22]			•		
Heterogeneity: Tau ² = 9.64: Chi ² = 9.68: df = 2 (P = 0.008): i ² = 79%									-100	-50 Favours CB	0 Favour	50 's RF	100

Appendice 8. Tabella riassuntiva degli studi in corso⁵¹

STUDIO	TITOLO	DISEGNO	POPOLAZIONE	INTERVENTO	COMPARATORE	ESITI	DURATA	STATO
NCT02166723	Persistent Atrial Fibrillation Cryoballoon Ablation https://clinicaltrials.gov/show/NCT02166723	Observational Model: Case only	Persistent Atrial Fibrillation Enrollment 62	Arctic Front Cryoballoon	-	Time to Recurrence of atrial fibrillation [Time Frame: within 1 year after the procedure]	2013-2015	The recruitment status of this study is unknown
NCT01456949	Sustained Treatment of Paroxysmal Atrial Fibrillation Post- Approval Study (STOP AF PAS) https://clinicaltrials.gov /show/NCT01456949	Interventional: non randomized, single group	Paroxysmal Atrial Fibrillation Enrollment 400	Medtronic Arctic Front® Cardiac CryoAblation System		Effectiveness [Time Frame: Through 36 months] Safety [Time Frame: 12 Months]	2012-2018	Active, not recruiting
NCT02294929	Cryoballoon Ablation in Patients With Long standing Persistent Atrial Fibrillation https://clinicaltrials.gov /show/NCT02294929	Interventional: non randomized, single group	Paroxysmal Atrial Fibrillation Enrollment 40	Arctic Front™ Advance Cardiac CryoAblation Catheter in two balloon sizes (23mm and 28mm)		Clinical success: freedom from AF and related symptoms [Time Frame: 12 months	2013-2018	Recruiting
NCT02785991	Spanish Registry of Cryoballoon Ablation https://clinicaltrials.go v/show/NCT02785991	Prospective Registry	Atrial Fibrillation Enrollment 1.000	Balloon cryoablation		The efficacy of the cryoablation procedure at 12 months, defined as the absence of recurrences of atrial fibrillation. [Time Frame: 12 months]	2016-2020	Recruiting

Tutti i link sono stati verificati a novembre 2017.

STUDIO	TITOLO	DISEGNO	POPOLAZIONE	INTERVENTO	COMPARATORE	ESITI	DURATA	STATO
NCT00889681	Continued Access Protocol https://clinicaltrials.go v/show/NCT00889681	Interventional: non randomized, single group	Fibrillation	Arctic Front Cardiac Cryoablation System Enrollment 81	-	Cryoablation Procedure Events (CPEs) [Time Frame: 365 days] Acute Procedural Success (APS) [Time Frame: At the conclusion of the cryoablation procedure] Freedom From Major Atrial Fibrillation Events (MAFE) [Time Frame: 365 days] Long-term Clinical Success [Time Frame: 180 days	2009-2013	Completed No results
NCT02639793	Effects of Catheter Ablation on Burden of Atrial Fibrillation (MRICEMAN) https://clinicaltrials.go v/show/NCT02785991		Paroxysmal Atrial Fibrillation Enrollment 300	cryoablation	magnet navigation ablation; manual radiofrequency ablation	Free of atrial fibrillation [Time Frame: 24 months]	2016-2020	Not yet recruiting
NCT02588183	PV Cryoablation Efficacy (COR ADVANCE Study) https://clinicaltrials.gov /show/NCT02588183	single group	Fibrillation	New generation ArcticFont Advance ST Cryoenergy Balloon Catheter	-	Proportion of patients free-from AF, without antiarrhythmic drug therapy [Time Frame: 12 months]	2005- 2017	Recruiting
NCT02553239	CoolLoop Paroxysmal trial Fibrillation https://clinicaltrials.gov /show/NCT02553239	non randomized, single group	Paroxysmal Atrial Fibrillation Enrollment 112	CoolLoop	-	Safety of catheter ablation using the CoolLoop® cryoablation catheter determined by the number of patients with device-, or procedure-related serious adverse events. [Time Frame: 12 months follow-up period]	2014-2019	Recruiting

STUDIO	TITOLO	DISEGNO	POPOLAZIONE	INTERVENTO	COMPARATORE	ESITI	DURATA	STATO
NCT00821015	Effect of Balloon Cryoablation on Left Atrial Function https://clinicaltrials.gov /show/NCT00821015	single group	Paroxysmal Atrial Fibrillation Enrollment 27	cryoballoon catheter	-	Acute Procedural Success (APS): Demonstration of electrical isolation of all 4 PVs or their anomalous equivalents at the conclusion of the first protocol-defined cryoablation procedure. [Time Frame: Immediately following procedure] Chronic Treatment Success: A subject who does not have episodes of AF, lasting at least 30 seconds in duration, 3 months following the initial ablation procedure. [Time Frame: Three months following initial ablation] Parameters of atrial function: a. Volumes at P-wave onset and end-systole b. LA active emptying volume c. LA active emptying fraction d. Late diastolic peak velocity e. LA filling fraction f. Pulmonary venous inflow pattern [Time Frame: 6 and 12 months following procedure] Ventricular Function: a. LV ejection fraction b. E/A ratio c. Lateral early diastolic peak velocity [Time Frame: 6 and 12 months following study]		Completed No results
NCT03012841	STOP Persistent AF https://clinicaltrials.gov /show/NCT03012841		Fibrillation	Arctic Front Advance Cardiac CryoAblation	-	Percent of subjects free from treatment failure at 12 months after the pulmonary vein isolation (PVI) ablation procedure. [Time Frame: 12 Months]	2017-2020	Recruiting

STUDIO	TITOLO	DISEGNO	POPOLAZIONE	INTERVENTO	COMPARATORE	ESITI	DURATA	STATO
NCT03040037	Cryoballoon Atrial Fibrillation Fiblation Registry https://clinicaltrials.gov/show/NCT03040037	Prospective Registry	Atrial Fibrillation Enrollment 1.500	cryoballoon ablation	-	Freedom from arrhythmia: Number of participants with no evidence of atrial achyarrhythmia longer than 30 s, as detected by regular ECG monitoring [Time Frame: 1 Year	2016-2019	Recruiting
NCT01913522	Cryobaloon vs. Irrigated Radiofrequency Catheter ablation: Double Short vs. Standard Exposure Duration https://clinicaltrials.gov/show/NCT01913522	Interventional: randomized	Paroxysmal Atrial Fibrillation Enrollment 348	Short Cryoablation/cryob alloon (multiple- freeze 120 seconds) Standard Cryoablation/ cryoballoon (one freeze of 120 seconds)	Irrigated RF Ablation	Time to first recurrence of AF, atrial flutter, or left atrial tachycardia documented by 12-lead ECG, surface ECG rhythm strips, ambulatory ECG monitor, or implantable loop recorder and lasting 30 seconds or longer [Time Frame: 1 year]	2014-2018	Active, not recruiting
NCT03008811	Norwegian Study of Persistent Atrial Fibrillation Treatment: Cryoballoon Versus Radiofrequency Catheter Ablation https://clinicaltrials.g ov/show/NCT030088	Interventional: randomized	Persistent Atrial Fibrillation Enrollment 128	Second generation Arctic Front Advance™ cardiac cryoablation catheter system.	TactiCath™ Quartz irrigated ablation catheter (St. Jude Medical) with aid of 3-D mapping system (EnSite Precision, St. Jude Medical).	The freedom of any atrial arrhythmias at 12 months. [Time Frame: 12 months]	2016-2019	Active, not recruiting

STUDIO	TITOLO	DISEGNO	POPOLAZIONE	INTERVENTO	COMPARATORE	ESITI	DURATA	STATO
NCT03148392	Assess Differences in Pain Following Cryo and Radiofrequency Atrial Fibrillation Ablation https://clinicaltrials.gov /show/NCT03148392	Observational, Perspective, controlled	Paroxysmal Atrial Fibrillation Enrollment 100	Arctic Front Advance Cryo Balloon:	Contact Force Sensing Radiofrequency Catheter Ablation	Pain Intensity Measurement [Time Frame: 7 Days]	2017-2019	Not yet recruiting
NCT02611869	Effect of Cryoballoon and RF ablation on Left Atrial Function https://clinicaltrials.gov /show/NCT02611869	Interventional: randomized	Paroxysmal Atrial Fibrillation Enrollment 120	2nd generation cryoballoon catheter Cryoballoon	Touch-force- sensing irrigated Radiofrequency catheter	Change in left atrial ejection fraction [Time Frame: 30 days	2015-2017	Recruiting
NCT03044951	Comparison of RF and crYoballoon ablatiOn Therapy of AF#CRYO-AF# https://clinicaltrials.gov/show/NCT03044951	Interventional: randomized	Atrial Fibrillation Enrollment 600	cryoballoon ablation	ablation	Efficacy endpoint (time to first documented clinical recurrence after blanking period) [Time Frame: one year]. the time to first documented clinical recurrence after blanking period (month). Safety endpoint (Any procedure-related complications) [Time Frame: one year]	2016-2020	Recruiting

STUDIO	TITOLO	DISEGNO	POPOLAZIONE	INTERVENTO	COMPARATORE	ESITI	DURATA	STATO
NCT02998866	Vein Isolation Including	non randomized, single group	Atrial Fibrillation	Cryoballoon (Esophageal Temperature- Guided Ablation)	-	Temperature Decline [Time Frame: 90 days or when complications resolve] Measurements of esophagus to each pulmonary vein [Time Frame: 90 days or when complications resolve] Create Recommendations for esophageal temperature-guided ablation [Time Frame: 90 days or when complications resolve] Assessment of additional Adverse Events [Time Frame: 90 days or when complications resolve]	2015-2020	Active, not recruiting
NCT02213731	Cryoballoon Ablation for Early Persistent Atrial Fibrillation (Cryo4 Persistent AF) https://clinicaltrials.gov /show/NCT02213731	non randomized, single group		Cryoballoon ablation	-	Single procedure success of cryoballoon ablation on patients with early persistent AF [Time Frame: 12 months]		Active, not recruiting
JPRN- UMIN000022272	A clinical study to evaluate the efficacy of radio frequency ablation and cryoballoon ablation on cardiac autonomic function - a randomized, parallel- group, open study	randomized	Paroxysmal Atrial Fibrillation Enrollment 200	Cryoablation	RF ablation	Change of outcome of MIBG before and after treatment	2016-	Recruiting

STUDIO	TITOLO	DISEGNO	POPOLAZIONE	INTERVENTO	COMPARATORE	ESITI	DURATA	STATO
967583	Cryoballoon ablation compared with single ring radiofrequency ablation for the treatment of atrial fibrillation: The Hot and Cold Study	randomized	, and the second	Arctic Front device (Medtronic, St Paul, MN, USA) and Enquiry mapping catheter	radiofrequency	Arrhythmia free survival as a composite of freedom from atrial fibrillation, atrial flutter or need for ongoing antiarrhythmic therapy for atrial tachyarrhythmias more than 3 months post-procedure as assessed on routine Holter monitoring, symptomatic AF recurrence confirmed on ECG or otherwise ECG documented AF recurrence. (12 months)	2015-	Recruiting
JPRN- UMIN000018461	Comparative evaluation of cellular damages and inflammatory responses between cryoballoon catheter ablation and radiofrequency catheter ablation for patients with atrial fibrillation	randomized	Enrollment 100	Arctic Front Advance or Freezor MAX cryoballoon catheter	adiofrequency catheter group NaviStar ThermoCool ablation catheter	Degree of cardiac injury (Troponin I)	2015-	Not yet recruiting